Abstract:
A device includes a substrate, a first doping portion, a second doping portion, a channel, a semiconductor film, a high-k layer, and a gate. The first doping portion and the second doping portion are over the substrate. The channel is over the substrate and between the first doping portion and the second doping portion. The semiconductor film is around the channel. The high-k layer is around the semiconductor film. The gate is over the high-k layer.
Abstract:
A semiconductor device includes an n-channel, a p-channel, a first gate dielectric layer, a second gate dielectric layer, a second dielectric sheath layer, and a metal gate. The first gate dielectric layer is around the n-channel. The first dielectric sheath layer is around the first gate dielectric layer. The second gate dielectric layer is around the p-channel. The second dielectric sheath layer is around the second gate dielectric layer, in which the first dielectric sheath layer and the second dielectric sheath layer comprise different materials. The metal gate electrode is around the first dielectric sheath layer and the second dielectric sheath layer.
Abstract:
A semiconductor device includes a substrate, at least one first semiconductor layer, and at least one second semiconductor layer. The at least one first semiconductor layer is disposed on the substrate, and the at least one second semiconductor layer is disposed on the at least one first semiconductor layer. The at least one first semiconductor layer includes a first doping portion, a second doping portion, a channel, and a semiconductor film. The second doping portion is adjacent to the first doping portion. The channel is disposed between the first doping portion and the second doping portion, and disposed with the substrate in parallel. The semiconductor film is disposed around the channel.
Abstract:
Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a fin structure over a semiconductor substrate. The fin structure includes a first surface and a second surface. The first surface is inclined to the second surface. The semiconductor device structure also includes a passivation layer covering the first surface and the second surface of the fin structure. The thickness of a first portion of the passivation layer covering the first surface is substantially the same as that of a second portion of the passivation layer covering the second surface.
Abstract:
A multi-gate semiconductor device is formed including a semiconductor substrate. The multi-gate semiconductor device also includes a first transistor including a first fin portion extending above the semiconductor substrate. The first transistor has a first channel region formed therein. The first channel region includes a first channel region portion doped at a first concentration of a first dopant type and a second channel region portion doped at a second concentration of the first dopant type. The second concentration is higher than the first concentration. The first transistor further includes a first gate electrode layer formed over the first channel region. The first gate electrode layer may be of a second dopant type. The first dopant type may be N-type and the second dopant type may be P-type. The second channel region portion may be formed over the first channel region portion.
Abstract:
A device includes a plurality of semiconductor fins extending from a substrate. A plurality of first source/drain regions are epitaxially grown from first regions of the semiconductor fins. Adjacent two of the plurality of first source/drain regions grown from adjacent two of the plurality of semiconductor fins are spaced apart by an isolation dielectric. A gate structure laterally surrounds second regions of the plurality of semiconductor fins above the first regions of the plurality of semiconductor fins. A plurality of second source/drain regions are over third regions of the plurality of semiconductor fins above the second regions of the plurality of semiconductor fins.
Abstract:
A semiconductor device includes a first source/drain structure, a channel layer, a second source/drain structure, a gate structure and an epitaxial layer. The channel layer is above the first source/drain structure. The second source/drain structure is above the channel layer. The gate structure is on opposite first and second sidewalls of the channel layer when viewed in a first cross-section taken along a first direction. The gate structure is also on a third sidewall of the channel layer but absent from a fourth sidewall of the channel layer when viewed in a second cross-section taken along a second direction different from the first direction. The epitaxial layer is on the fourth sidewall of the channel layer when viewed in the second cross-section and forming a P-N junction with the channel layer.
Abstract:
A vertical transistor device and a method for fabricating the same are provided. The vertical transistor device includes a semiconductor substrate, first sources/drains and second sources/drains. The semiconductor substrate includes a bottom portion and fin portions located on the bottom portion. Each of the fin portions includes an upper portion and a lower portion. The lower portion is located between the bottom portion of the semiconductor substrate and the upper portion, in which the lower portion includes recesses. The first sources/drains are disposed on terminals of the upper portions of the fin portions. The second sources/drains are disposed on the recesses of the lower portions of the fin portions, in which the sources/drains are not merged with each other. In the method for fabricating the vertical transistor device, the lower portions of the fin portions are patterned to form the recesses on the lower portions of the fin portions.
Abstract:
A semiconductor device includes a substrate, a well on the substrate and an FFT on the well. The FET includes a first source/drain, a vertical channel layer, a gate structure, a second source/drain and a body structure. The first source/drain is on the well. The vertical channel layer extends form the first source/drain. The first gate structure surrounds a first portion of sidewalls of the vertical channel layer. The second source/drain is on the vertical channel layer. The body structure is in physical contact with the vertical channel layer. The body structure and the vertical channel layer constitute a bipolar device.
Abstract:
A method for manufacturing a semiconductor device is provided by follows. A fin is formed over a substrate. A spacer is formed on a sidewall of a first portion of the fin. An epitaxy feature is grown from a second portion of the fin that is in a position lower than the first portion of the fin, in which the forming the epitaxy feature is performed after the forming the spacer. The spacer is removed to expose the first portion of the fin. A gate stack is formed around the exposed first portion of the fin.