Abstract:
The present disclosure describes a semiconductor device with a fill structure. The semiconductor structure includes first and second fin structures on a substrate, an isolation region on the substrate and between the first and second fin structures, a first gate structure disposed on the first fin structure and the isolation region, a second gate structure disposed on the second fin structure and the isolation region, and the fill structure on the isolation region and between the first and second gate structures. The fill structure includes a dielectric structure between the first and second gate structures and an air gap enclosed by the dielectric structure. The air gap is below top surfaces of the first and second fin structures.
Abstract:
A method includes delivering a wafer into a process chamber, applying a thermal energy to the wafer by a heat source, and moving the heat source substantially along a longitudinal direction of the heat source with respect to the wafer. An apparatus that performs the method is also disclosed.
Abstract:
An apparatus for processing a wafer includes a process chamber, a wafer support, a heat source, and a movable device. The wafer support is in the process chamber. The heat source is in the process chamber. The movable device contacts the heat source, in which the movable device is movable with respect to the wafer support.
Abstract:
Embodiments that relate to mechanisms for providing a stable dislocation profile are provided. A semiconductor substrate having a gate stack is provided. An opening is formed adjacent to a side of the gate stack. A first part of an epitaxial growth structure is formed in the opening. A second part of the epitaxial growth structure is formed in the opening. The first part and the second part of the epitaxial growth structure are formed along different directions.