Abstract:
A multi-gate semiconductor device is formed including a semiconductor substrate. The multi-gate semiconductor device also includes a first transistor including a first fin portion extending above the semiconductor substrate. The first transistor has a first channel region formed therein. The first channel region includes a first channel region portion doped at a first concentration of a first dopant type and a second channel region portion doped at a second concentration of the first dopant type. The second concentration is higher than the first concentration. The first transistor further includes a first gate electrode layer formed over the first channel region. The first gate electrode layer may be of a second dopant type. The first dopant type may be N-type and the second dopant type may be P-type. The second channel region portion may be formed over the first channel region portion.
Abstract:
A transistor and a method for forming the transistor are provided. The method includes performing at least one implantation operation in the transistor channel area, then forming a silicon carbide/silicon composite film over the implanted area prior to introducing further dopant impurities. A halo implantation operation with a low tilt angle is used to form areas of high dopant concentration at edges of the transistor channel to alleviate short channel effects. The transistor structure includes a reduced dopant impurity concentration at the substrate interface with the gate dielectric and a peak concentration about 10-50 nm below the surface. The dopant profile has high dopant impurity concentration areas at opposed ends of the transistor channel.
Abstract:
A multi-gate semiconductor device and method for forming the same. A multi-gate semiconductor device is formed including a first fin of a first transistor formed on a semiconductor substrate having a first dopant type. The first transistor has a doped channel region of the first dopant type. The device also includes a second fin of a second transistor formed on the first dopant type semiconductor substrate. The second transistor has a doped channel region of a second dopant type. The device further includes a gate electrode layer of the second dopant type formed over the channel region of the first fin and a gate electrode layer of the first dopant type formed over the channel region of the second fin.
Abstract:
A MOSFET disposed between shallow trench isolation (STI) structures includes an epitaxial silicon layer formed over a substrate surface and extending over inwardly extending ledges of the STI structures. The gate width of the MOSFET is therefore the width of the epitaxial silicon layer and greater than the width of the original substrate surface between the STI structures. The epitaxial silicon layer is formed over the previously doped channel and is undoped upon deposition. A thermal activation operation may be used to drive dopant impurities into the transistor channel region occupied by the epitaxial silicon layer but the dopant concentration at the channel location where the epitaxial silicon layer intersects with the gate dielectric, is minimized.