摘要:
The present invention provides a method of producing an electrolytic capacitor including a porous anode and a solid electrolyte made of a conductive polymer, which can improve coating properties of the conductive polymer on an external surface of the porous anode and productivity. By controlling a polymerization rate, it is possible to sufficiently coat the external surface of the porous anode and fill inner spaces of a lot of pores of the porous anode with the conductive polymer with less numbers of polymerization in comparison with a method of the prior art, thereby obtaining an electrolytic capacitor with small leak current and high reliability.
摘要:
The present invention provides a method for producing an electrolytic capacitor including a porous body of a valve metal, an oxide film on a surface of the valve metal, and a conductive polymer layer on a surface of the oxide film. The step of forming the conductive polymer layer on the surface of the oxide film includes the steps of dipping the porous body in a monomer solution; lifting the porous body from the monomer solution and dipping the porous body in an oxidizing solution; and lifting the porous body from the oxidizing solution and allowing the porous body to stand. In the step of dipping the porous body in the oxidizing solution, a period for which the porous body is dipped in the oxidizing solution is equal to or shorter than a period in which 30% of the monomer contained in pores of the porous body diffuses and flows into the oxidizing solution. Alternatively, the volume of the oxidizing solution can be less than three times that of the porous body. The above method can be performed by replacing the monomer solution and the oxidizing solution with each other. Furthermore, a temperature of the porous body is maintained at a low temperature (e.g., 10.degree. C. or less) in the step of dipping the porous body in the oxidizing solution.
摘要:
An electrolytic capacitor in which an conducting polymer as a cathode of the electrolytic capacitor is formed as a homogeneous and densified film on the dielectric layer even extending to the inside of pores of a valvular metal porous body and which obtains a high rate of inducing the capacitance, and have low impedance and high responsiveness at high frequencies. A chemical oxidation polymerization method is utilized to form an conducting polymer layer even extending to the inside of pores of the capacitor element. First, a polymerization reaction is performed in a solution excluding an organic acid-type dopant to form an conducting polymer layer as a densified film on a dielectric layer extending from the surface of the porous body to every inside portions of pores in the pretreatment. Then a polymerization reaction is performed in a solution containing an organic acid-type dopant to grow an conducting polymer layer containing an organic acid-type dopant over the conducting polymer layer without including an organic acid-type dopant in the primary treatment.
摘要:
Disclosed is a method of making an electrolytic capacitor including the steps of forming a cathode by depositing a homogeneous and densified conducting polymer on a dielectric layer of a valvular metal porous anode. The conducting polymer is formed of two layers by chemical oxidation polymerization. The first conductive polymer layer is formed in the pretreatment step using a solution excluding an organic acid-type dopant, the polymer is efficiently formed on the inner surface of the pores of the anode and the second conductive polymer layer is formed in the primary treatment step on the first conductive polymer layer, using a solution containing an organic acid-type dopant. The resultant capacitor obtains a high capacitance, a low impedance, and a high responsiveness at high frequencies.
摘要:
A solid electrolytic capacitor includes an anode element made of a valve action metal, a dielectric oxide film formed on a surface of the anode element, a solid electrolytic layer formed on a surface of the dielectric oxide film, and a cathode layer formed on a surface of the solid electrolytic layer. The solid electrolytic layer has an iron concentration not greater than 100 ppm. Alternatively or in combination therewith, a weight fraction of residues in the solid electrolytic layer is smaller than 5 wt %. The polymerization residue is an oxidizing agent and a monomer that is produced when such solid electrolytic layer is formed.
摘要:
A solid electrolytic capacitor includes a capacitor element having an anode of a valve action metal, an oxide film layer formed on the surface of the anode, a solid electrolytic layer formed on the oxide film layer and a cathode electrically connected to the solid electrolytic layer, and also a packaging resin formed to cover the capacitor element. An intermediate layer to relieve stress is arranged in at least one part of the interface between the cathode and the packaging resin. The intermediate layer is deformed and/or peels to relieve stress caused by heat applied while mounting the capacitor element on a substrate.
摘要:
A solid electrolyte capacitor includes an anode made of a valve metal on whose surface a dielectric oxide film layer is formed, a solid electrolyte layer formed on the dielectric oxide film, a cathode layer formed on the solid electrolyte layer, a cathode contact terminal electrically connected to the cathode layer, and an anode contact terminal electrically connected to the anode layer. The cathode layer includes a carbon layer containing carbon particles, and a conductive paste layer containing conductive metal particles and having numerous pores, formed in that order from the solid electrolyte layer side. The solid electrolyte capacitor further includes a conductive polymer layer formed through the numerous pores of the conductive paste layer and connecting the carbon particles of the carbon layer and the conductive metal particles of the conductive paste layer. Thus, the interface resistance between the carbon layer and the conductive paste layer is lowered, and a solid electrolyte capacitor with small equivalent series resistance can be provided.
摘要:
An electrode for a PTC thermistor of the present invention includes a base layer having electrical conductivity and a sintered layer formed on the base layer. The sintered layer is formed by sintering a conductive powder and has electrical conductivity, and has roughness on a surface thereof. Thus, the present invention can provide an electrode for a PTC thermistor that has a large adhesion to the conductive polymer and can be produced easily.
摘要:
A solid electrolytic capacitor capable of realizing miniaturization and large capacitance and obtaining the connection, in particular electric connection between the anodes, with low resistance and high reliability. A solid electrolytic capacitor includes: a laminate including a plurality of capacitor units in which a dielectric layer and a solid electrolytic layer are laminated in this order on a predetermined surface of an anode made of a valve metal; a sealing body for sealing the laminate; and an anodic conductive elastic body formed outside the sealing body and electrically connected to the anode. The anodes are adhered to each other via the conductive elastic body. In the solid electrolytic capacitor, a part of the anode is exposed to the outside of the sealing portion and the exposed portion is covered with a plating layer, and electrically connected to the anodic conductive elastic body via the covered exposed portion.
摘要:
A method of manufacturing a ceramic electronic part includes the steps of: firing Pd electrodes or alloy electrodes containing Pd as a primary metal along with ceramics in the atmosphere in which Pd cannot be oxidized within the range (I) of oxidizing temperature of Pd in air; and firing the Pd electrodes or alloy electrodes along with the ceramics in air within the range (II) of deoxidizing temperature of PdO in air. The method can manufacture a ceramic electronic part, such as a multilayer ceramic capacitor, including Pd electrodes or alloy electrodes which contain Pd as a primary metal without forming internal defects inside the ceramic electronic part and reducing its properties.