摘要:
On the back surface of a transparent plate having a light extracting part for outputting lights to the outside, an electrode for wiring, and an electrode for an electromagnetic shield, an optical device is flip-chip mounted right under the light extracting part, an a driver IC is flip-chip mounted at a desired position with metal bumps. When currents driving the optical device flow from the driver IC according to an electric logical signal from the outside, an optical signal is emitted from the optical device, and is output to the outside through the light extracting part. The light extracting part may be provided with a light coupling material or an optical axis converter.
摘要:
On the back surface of a transparent plate having a light extracting part 14 for outputting lights to the outside, an electrode 16 for wiring, and an electrode 17 for an electromagnetic shield, an optical device 11 is flip-chip mounted right under the light extracting part 14, an a driver IC 12 is flip-chip mounted at a desired position with metal bumps 15. When currents driving the optical device 11 flow from the driver IC 12 according to an electric logical signal from the outside, an optical signal is emitted from the optical device 11, and is output to the outside through the light extracting part 14. The light extracting part 14 may be provided with a light coupling material or an optical axis converter.
摘要:
A semiconductor device comprises: an insulating flexible film capable of changing its profile; first and second conductive layers provided on both surfaces of the flexible film and constituting wiring patterns; an LSI mounted on the first conductive layer; a conductor provided in a hole formed in the flexible film and making connection between the wiring pattern formed in the first conductive layer and the wiring pattern formed in the second wiring pattern; a stiffener; and a heat spreader. A part of the wiring pattern constituted by each of the first conductive layer and the second wiring pattern is a conductive wiring, whose characteristic impedance is previously calculated, for a high-speed signal and a connection portion for making connection to a mother board is provided on an end of the conductive wiring for a high-speed signal. Thus the semiconductor device is able to have a high heat removal ability without sacrificing its electrical performance and enables time efficiency in package design associated with package assembly and reduced assembly cost.
摘要:
An optical module outputting transmitted optical signals from a light-emitting element to an optical fiber and guiding received optical signals arriving from the same optical fiber to a light-receiving element prevents transmitted optical signals originating from the light-emitting element of a local station from coupling to the light-receiving element, devolving into noise and impeding communication. Light-emitting element and light-receiving element are arranged in a positional relationship, whereby the optical axis of light-emitting element and the normal to light-receiving surface of light-receiving element are located in a spatially divergent relationship. Furthermore, it comprises optical path conversion elements which, along with guiding optical signals propagating along receiving optical waveguide to light-receiving surface of light-receiving element, ensures that the image of the light-emitting spot of light-emitting element projected onto a plane including light-receiving surface of light-receiving element does not overlap with light-receiving surface of light-receiving element.
摘要:
An optical module outputting transmitted optical signals from a light-emitting element to an optical fiber and guiding received optical signals arriving from the same optical fiber to a light-receiving element prevents transmitted optical signals originating from the light-emitting element of a local station from coupling to the light-receiving element, devolving into noise and impeding communication. Light-emitting element 210 and light-receiving element 202 are arranged in a positional relationship, whereby the optical axis of light-emitting element 201 and the normal to light-receiving surface 402 of light-receiving element 202 are located in a spatially divergent relationship. Furthermore, it comprises optical path conversion means which, along with guiding optical signals propagating along receiving optical waveguide 302 to light-receiving surface 402 of light-receiving element 202, ensures that the image of the light-emitting spot of light-emitting element 201 projected onto a plane comprising light-receiving surface 402 of light-receiving element 202 does not overlap with light-receiving surface 402 of light-receiving element 202.