摘要:
A manufacturing method of a thin film transistor includes forming a pair of source/drain electrodes on a substrate, such that the source/drain electrodes define a gap therebetween; forming low resistance conductive thin films, which define a gap therebetween, on the source/drain electrodes; and forming an oxide semiconductor thin film layer on upper surface of the low resistance conductive thin films and in the gap defined between the low resistance conductive thin films so that the oxide semiconductor thin film layer functions as a channel. The low resistance conductive thin films and the oxide semiconductor thin film layer are etched so that side surfaces of the resistance conductive thin films and corresponding side surfaces of the oxide semiconductor thin film layer coincide with each other in a channel width direction of the channel. A gate electrode is mounted over the oxide semiconductor thin film layer.
摘要:
A semiconductor device includes an oxide semiconductor thin film layer of zinc oxide. The (002) lattice planes of at least a part of the oxide semiconductor thin film layer have a preferred orientation along a direction perpendicular to a substrate of the semiconductor device and a lattice spacing d002 of at least 2.619 Å.
摘要:
A semiconductor device includes an oxide semiconductor thin film layer of zinc oxide. The (002) lattice planes of at least a part of the oxide semiconductor thin film layer have a preferred orientation along a direction perpendicular to a substrate of the semiconductor device and a lattice spacing d002 of at least 2.619 Å.
摘要:
A thin film transistor includes a substrate, and a pair of source/drain electrodes (i.e., a source electrode and a drain electrode) formed on the substrate and defining a gap therebetween. A pair of low resistance conductive thin films are provided such that each coats at least a part of one of the source/drain electrodes. The low resistance conductive thin films define a gap therebetween. An oxide semiconductor thin film layer is continuously formed on upper surfaces of the pair of low resistance conductive thin films and extends along the gap defined between the low resistance conductive thin films so as to function as a channel. Side surfaces of the oxide semiconductor thin film layer and corresponding side surfaces of the low resistance conductive thin films coincide with each other in a channel width direction of the channel.
摘要:
A manufacturing method of a semiconductor device includes forming an oxide semiconductor thin film layer of zinc oxide, wherein at least a portion of the oxide semiconductor thin film layer in an as-deposited state includes lattice planes having a preferred orientation along a direction perpendicular to the substrate and a lattice spacing d002 of at least 2.619 Å.
摘要:
A manufacturing method of a thin film transistor includes forming a pair of source/drain electrodes on a substrate, such that the source/drain electrodes define a gap therebetween; forming low resistance conductive thin films, which define a gap therebetween, on the source/drain electrodes; and forming an oxide semiconductor thin film layer on upper surface of the low resistance conductive thin films and in the gap defined between the low resistance conductive thin films so that the oxide semiconductor thin film layer functions as a channel. The low resistance conductive thin films and the oxide semiconductor thin film layer are etched so that side surfaces of the resistance conductive thin films and corresponding side surfaces of the oxide semiconductor thin film layer coincide with each other in a channel width direction of the channel. A gate electrode is mounted over the oxide semiconductor thin film layer.
摘要:
A thin film transistor includes a substrate, and a pair of source/drain electrodes (i.e., a source electrode and a drain electrode) formed on the substrate and defining a gap therebetween. A pair of low resistance conductive thin films are provided such that each coats at least a part of one of the source/drain electrodes. The low resistance conductive thin films define a gap therebetween. An oxide semiconductor thin film layer is continuously formed on upper surfaces of the pair of low resistance conductive thin films and extends along the gap defined between the low resistance conductive thin films so as to function as a channel. Side surfaces of the oxide semiconductor thin film layer and corresponding side surfaces of the low resistance conductive thin films coincide with each other in a channel width direction of the channel.
摘要:
A semiconductor device includes an oxide semiconductor thin film layer primarily including zinc oxide having at least one orientation other than (002) orientation. The zinc oxide may have a mixed orientation including (002) orientation and (101) orientation. Alternatively, the zinc oxide may have a mixed orientation including (100) orientation and (101) orientation.
摘要:
A semiconductor device includes an oxide semiconductor thin film layer primarily including zinc oxide having at least one orientation other than (002) orientation. The zinc oxide may have a mixed orientation including (002) orientation and (101) orientation. Alternatively, the zinc oxide may have a mixed orientation including (100) orientation and (101) orientation.
摘要:
A semiconductor integrated circuit device includes a gate electrode of at least one of a P-channel MISFET (metal-insulator-semiconductor field-effect transistor) and an N-channel MISFET provided in a direction parallel to a direction of a well isolation boundary phase between the P-channel MISFET and the N-channel MISFET, a first diffusion layer having a same conductivity type as that of a drain diffusion layer of one of a plurality of ones of the MISFET provided in two regions with a drain diffusion layer of the MISFET therebetween through an isolation respectively in a direction orthogonal to the gate electrode, and a second diffusion layer having a conductivity type different from that of the drain diffusion layer of the one of the plurality of ones of the MISFET provided between the well isolation boundary phase and one of a source diffusion layer and the drain diffusion layer.