摘要:
A logical level converter generates an output signal by which a succeeding logical circuit accurately operates even if there is a threshold fluctuation factor. In the logical level converter, an output signal of a voltage control oscillator in a phase locked loop is inputted to a threshold variable inverter. A DC component of another output signal from the threshold variable inverter is inputted to a comparator, and compared with a comparison voltage. A threshold setting signal is outputted on the basis of a comparison result. The threshold value of the threshold variable inverter is changed according to the threshold variable signal, and the output signal is converted into the other output signal. When the comparison result comes to a given state, the value of the threshold setting signal is held, and the other output signal is outputted as a further different output signal.
摘要:
A logical level converter generates an output signal by which a logical circuit accurately operates even if there is a threshold fluctuation factor. In the logical level converter, an output signal of a voltage control oscillator in a phase locked loop is inputted to a threshold variable inverter. A DC component of another output signal from the threshold variable inverter is inputted to a comparator, and compared with a comparison voltage. A threshold setting signal is outputted on the basis of a comparison result. The threshold value of the threshold variable inverter is changed according to the threshold variable signal, and the output signal is converted into the other output signal. When the comparison result comes to a given state, the value of the threshold setting signal is held, and the other output signal is outputted as a further different output signal.
摘要:
A logical level converter generates an output signal by which succeeding logical circuit accurately operates even if there is a threshold fluctuation factor. In the logical level converter, an output signal of a voltage control oscillator in a phase locked loop is inputted to a threshold variable inverter. A DC component of another output signal from the threshold variable inverter is inputted to a comparator, and compared with a comparison voltage. A threshold setting signal is outputted on the basis of a comparison result. The threshold value of the threshold variable inverter is changed according to the threshold variable signal, and the output signal is converted into the other output signal. When the comparison result comes to a given state, the value of the threshold setting signal is held, and the other output signal is outputted as a further different output signal.
摘要:
To provide a phase locked loop circuit that is capable of performing an automatic adjustment that satisfies a desired characteristic not depending on a process variation and an environmental variation. The phase locked loop circuit has a phase frequency comparator, a charge pump, a loop filter, a frequency divider, a selector, and a voltage controlled oscillator. The frequency divider inputs an output signal and a reference signal, divides the output signal, and outputs a feedback signal, and also outputs a select signal, a trimming signal, and a limit signal from the output signal. The voltage controlled oscillator inputs the control voltage, the base voltage, the trimming signal, and the limit signal, changes the output signal frequency according to the control voltage so as to limit the upper limit frequency of the output signal. Also, the voltage controlled oscillator is capable of changing the frequency sensitivity of the output signal that is outputted with respect to the control voltage according to the trimming signal, and the upper limit frequency of the output signal according to the limit signal.
摘要:
To provide a phase locked loop circuit that is capable of performing an automatic adjustment that satisfies a desired characteristic not depending on a process variation and an environmental variation. The phase locked loop circuit has a phase frequency comparator, a charge pump, a loop filter, a frequency divider, a selector, and a voltage controlled oscillator. The frequency divider inputs an output signal and a reference signal, divides the output signal, and outputs a feedback signal, and also outputs a select signal, a trimming signal, and a limit signal from the output signal. The voltage controlled oscillator inputs the control voltage, the base voltage, the trimming signal, and the limit signal, changes the output signal frequency according to the control voltage so as to limit the upper limit frequency of the output signal. Also, the voltage controlled oscillator is capable of changing the frequency sensitivity of the output signal that is outputted with respect to the control voltage according to the trimming signal, and the upper limit frequency of the output signal according to the limit signal.
摘要:
To provide a phase locked loop circuit that is capable of performing an automatic adjustment that satisfies a desired characteristic not depending on a process variation and an environmental variation. The phase locked loop circuit has a phase frequency comparator, a charge pump, a loop filter, a frequency divider, a selector, and a voltage controlled oscillator. The frequency divider inputs an output signal and a reference signal, divides the output signal, and outputs a feedback signal, and also outputs a select signal, a trimming signal, and a limit signal from the output signal. The voltage controlled oscillator inputs the control voltage, the base voltage, the trimming signal, and the limit signal, changes the output signal frequency according to the control voltage so as to limit the upper limit frequency of the output signal. Also, the voltage controlled oscillator is capable of changing the frequency sensitivity of the output signal that is outputted with respect to the control voltage according to the trimming signal, and the upper limit frequency of the output signal according to the limit signal.
摘要:
To provide a phase locked loop circuit that is capable of performing an automatic adjustment that satisfies a desired characteristic not depending on a process variation and an environmental variation. The phase locked loop circuit has a phase frequency comparator, a charge pump, a loop filter, a frequency divider, a selector, and a voltage controlled oscillator. The frequency divider inputs an output signal and a reference signal, divides the output signal, and outputs a feedback signal, and also outputs a select signal, a trimming signal, and a limit signal from the output signal. The voltage controlled oscillator inputs the control voltage, the base voltage, the trimming signal, and the limit signal, changes the output signal frequency according to the control voltage so as to limit the upper limit frequency of the output signal. Also, the voltage controlled oscillator is capable of changing the frequency sensitivity of the output signal that is outputted with respect to the control voltage according to the trimming signal, and the upper limit frequency of the output signal according to the limit signal.
摘要:
A DCDC converter includes a signal splitting unit that splits an input signal into N signal components; N DCDC converter elements that process individually the N split signals; and an adder that adds outputs from the plural DCDC converter elements to generate output signals. Each of the DCDC converter elements has an operation band narrower than an applicable frequency band of the input signal, and selects a design parameter that allows a conversion efficiency of the DCDC converter elements to be optimized for any band of the applicable frequency bands. For example, the parameter of a PMOS transistor and a NMOS transistor, which configure an inverter is designed to optimize the efficiency at any of frequency bands. The frequency band of the input signal is split, and each of the split outputs is input to a DCDC converter element that has a corresponding frequency and high efficiency characteristic.
摘要:
A DCDC converter includes a signal splitting unit that splits an input signal into N signal components; N DCDC converter elements that process individually the N split signals; and an adder that adds outputs from the plural DCDC converter elements to generate output signals. Each of the DCDC converter elements has an operation band narrower than an applicable frequency band of the input signal, and selects a design parameter that allows a conversion efficiency of the DCDC converter elements to be optimized for any band of the applicable frequency bands. For example, the parameter of a PMOS transistor and a NMOS transistor, which configure an inverter is designed to optimize the efficiency at any of frequency bands. The frequency band of the input signal is split, and each of the split outputs is input to a DCDC converter element that has a corresponding frequency and high efficiency characteristic.
摘要:
A jointing structure comprising multiple steps provided face to face at the coaxially built traveling path ends with an expansion gap between, multiple elastic members respectively mounted inside the multiple steps, and a joint block mounted on the multiple elastic members across the expansion gap. Multiple supporting blocks and one or more than one intermediate joint block are mounted inside the multiple steps with the joint block between. The multiple supporting blocks, the joint block and the one or more than one intermediate joint block are of concrete. The elastic members are joined together across the expansion gap. The elastic member on one side is fixed to the inside of the step on one side and then subjected to deformation toward the bridge girder axis, and thereafter, the elastic member on the other side is fixed to the inside of the step on the other side.