摘要:
In a laser of such type that the distribution of the effective refractive index varies in a direction which is along the face of its active layer and perpendicular to the direction of the laser light transmission, thereby defining the active region to be between a pair of refractive index changing zones, the refractive indexes of a pair of end surfaces of a laser resonator (i.e. the active region) is made smaller than the intrinsic refractive indexes of the cleavage face of the active layer.
摘要:
In a semiconductor laser of terraced substrate type, comprising on a terraced substrate (11) of n-GaAs substrate, a first clad layer (12) of n-GaAlAs, an active layer (13) of non-doped GaAlAs, a second clad layer (14) of p-GaAlAs and a current limiting layer (15) of n-GaAs, and further thereon a thick overriding layer (19) of n-GaAlAs with strip shaped opening (191), are epitaxially formed, and a current injection layer (16) is formed by Zn diffusion through the opening (191) in a manner one corner (161) of the injection front penetrate the current limiting layer (15) and reaches the second clad layer (14). By means of thick overriding layer (19), shortcircuiting between the active layer (13) and a p-side electrode (7) is prevented.
摘要:
On an n-type semiconductor substrate having a ridge part of stripe-shaped pattern, the following layers are formed by liquid phase sequential epitaxial growth: an undoped active layer; a p-type clad layer; and an n-type isolation layer. Thereafter, a Cd impurity is diffused in the isolation layer in a stripe-shaped pattern at the position above the ridge part, thereby forming a p+-type conduction region in the central part of the isolation layer. By forming the stripe-shaped ridge part on the substrate overriding the active layer, the injected current is effectively confined to the lasing region which is the thinner part of the active layer and is on the ridge part. Therefore the threshold current is decreased. Accordingly, the light lased in the active layer is effectively confined in a stripe-shaped lasing region thereof, and a stable transverse mode of lasing is obtainable.
摘要:
A mounting of semiconductor laser chip on a heat sink or metal mount is improved so as to enable high accuracy of position and direction. A heat sink or metal mount, on which a semiconductor laser chip is mounted, comprises two parts, namely a main mount or larger portion and a sub-mount or smaller portion. The semiconductor laser chip is soldered by a solder layer on the sub-mount utilizing a microscope so as to assure an accurate position and an accurate direction with respect to the sub-mount. Then, the sub-mount is soldered on the main mount by a solder layer with an accurate relation both in position and direction by engaging a linear ridge as a first engaging means provided on the upper face of the main mount with a straight groove and a rear end face as a second engaging means, or by engaging a square recess as a first engaging means and the square bottom of the sub-mount as a second engaging means with each other. As a result of the above-mentioned structure, accurate position and direction of the semiconductor laser chip with respect to the mount is easily obtainable with a high yield.
摘要:
In a semiconductor laser which has epitaxial layers including an active layer on a semiconductor substrate, a buffer layer is formed neighboring the active layer, in order to prevent undesirable diffusion of a highly diffusing dopant (Zn) into the active layer from an adjacent layer such as the second clad layer. The buffer layer has the same conductivity as that of the adjacent layer, has a broader energy gap than the active layer, and the dopant of the buffer layer is less diffusing than that of the adjacent layer.
摘要:
On a semiconductor laser substrate, a groove of tapered width is formed, and at least one crystal layer is formed on the substrate. The crystal layer is usable as a waveguide with two light input ends l.sub.1 and l.sub.2 and one light output end l.sub.3 as shown in FIG. 4(C).
摘要:
In a laser comprising a GaAs substrate, an active layer of GaAlAs put between a first and a second clad layers, a buffer layer is disposed between said first clad layer and said substrate, and thermal expansion coefficient of the buffer layer is selected smaller than that of said active layer; thereby an internal stress of the active layer is released and lifetime of the laser is very much prolonged.
摘要:
In a semiconductor laser comprising a terrace-shaped semiconductor substrate, a first clad layer formed on the semiconductor substrate, an active layer formed on the first clad layer and having two discontinuity places at bending portions of the first clad layer, a second clad layer formed on the active layer, and a current injection electrode above a lasing region in the active layer, the improvement is that a stable fundamental transverse lasing mode and a circular laser beam are obtainable from the lasing region definitely separated by two discontinuity places in the active layer.
摘要:
A mounting of semiconductor laser chip on a heat sink or metal mount is improved so as to enable high accuracy of position and direction. A heat sink or metal mount, on which a semiconductor laser chip is mounted, comprises two parts, namely a main mount or larger portion and a sub-mount or smaller portion. The semiconductor laser chip is soldered by a solder layer on the sub-mount utilizing a microscope so as to assure an accurate position and an accurate direction with respect to the sub-mount. Then, the sub-mount is soldered on the main mount by a solder layer with an accurate relation both in position and direction by engaging a linear ridge as a first engaging means provided on the upper face of the main mount with a straight groove and a rear end face as a second engaging means. As a result of the above-mentioned structure, accurate position and direction of the semiconductor laser chip with respect to the mount is easily obtainable with a high yield.
摘要:
A stem for a semiconductor laser device of a terraced substrate structure which has a tilted active layer against flat parts of the substrate, the stem comprises a base plate and a heat sink block, a flat face of the heat sink block for bonding the semiconductor laser device thereonto is tilted with respect to a base face of the base plate; this stem has features that the polarization direction of the lased light from the semiconductor laser device can be set to be parallel to (or perpendicular to) the base face of the base plate, and therefore it becomes much easier to make adjustments related with the polarization direction of the lased light.