摘要:
Embodiments of the present invention help to provide a discrete track medium for realizing a high track density in a low price by adopting a configuration, in which filling of a non-magnetic material into a guard band portion and smoothing processing of a medium surface are not required. According to one embodiment, a perpendicular magnetic recording medium, on the non-magnetic substrate, includes at least: a soft magnetic underlayer; a first recording layer including a crystal grain having a magnetic property and a non-magnetic grain boundary having an oxide, as a main component, surrounding the crystal grain; a second recording layer containing a ferromagnetic metal as a main component and not containing an oxide; and at least one non-magnetic layer provided between the first recording layer and the second recording layer. A recording track portion for magnetically recording information and a guard band portion provided between adjacent recording track portions are included in the perpendicular magnetic recording medium. The relationship between the total thickness t1 of the non-magnetic layer in the guard band portion and the total thickness t2 of the non-magnetic layer in the recording track portion is set as t1>t2.
摘要:
Embodiments of the present invention help to provide a discrete track medium for realizing a high track density in a low price by adopting a configuration, in which filling of a non-magnetic material into a guard band portion and smoothing processing of a medium surface are not required. According to one embodiment, a perpendicular magnetic recording medium, on the non-magnetic substrate, includes at least: a soft magnetic underlayer; a first recording layer including a crystal grain having a magnetic property and a non-magnetic grain boundary having an oxide, as a main component, surrounding the crystal grain; a second recording layer containing a ferromagnetic metal as a main component and not containing an oxide; and at least one non-magnetic layer provided between the first recording layer and the second recording layer. A recording track portion for magnetically recording information and a guard band portion provided between adjacent recording track portions are included in the perpendicular magnetic recording medium. The relationship between the total thickness t1 of the non-magnetic layer in the guard band portion and the total thickness t2 of the non-magnetic layer in the recording track portion is set as t1>t2.
摘要:
A thermally assisted magnetic recording medium includes a substrate and at least two, i.e., first and second magnetic recording layers. These layers are hard magnetic layers and contain magnetic grains and a non-magnetic substance magnetically segregating the magnetic grains at grain boundaries. The first magnetic recording layer has a magnetic anisotropy energy Ku1, a grain volume v1, and energy for maintaining its recording magnetization Ku1v1; the second magnetic recording layer has a magnetic anisotropy energy Ku2, a grain volume v2, and energy for maintaining its recording magnetization Ku2v2; and the ratio Ku1v1/kBT of Ku1v1 to a thermal fluctuation energy kBT, where kB represents a Boltzmann constant and T represents an absolute temperature, and the ratio Ku2v2/kBT of Ku2v2 to kBT satisfy the following conditions: Ku1v1/kBT is larger than Ku2v2/kBT at room temperature, but is smaller than Ku2v2/kBT at temperatures around the Curie temperature of the first magnetic recording layer.
摘要:
A vertical magnetic recording apparatus is provided which can diminish thermal decay of magnetization to ensure a high reliability of the life of recorded information and which can stably effect the write of magnetic information. Light assist is performed by obliquely applying light to a gap between a main pole of a vertical recording head and a medium. The light is radiated from the head side of the apparatus with respect to the medium. Utilizing the present invention, the thermal decay of magnetization at room temperature is diminished, the life of the recorded information is increased, and the storage reliability of the disk is increased.
摘要:
Disclosed are a perpendicular magnetic recording medium with lower medium noise, insusceptible to thermal fluctuation and high recording resolution and a method of manufacturing it. As the step of forming a metal layer at the time of forming a recording layer on a non-magnetic substrate via a plurality of underlayers and the step of forming an oxide layer with an average thickness of 0.2 nm or less are repeated, the crystal grains are magnetically isolated without disturbing the orientation of the crystal grain of the recording layer of the perpendicular magnetic recording medium or without degrading the magnetic characteristic of the crystal grain of the recording layer.
摘要:
Embodiments of the invention provide a perpendicular magnetic recording medium capable of reconciling a high recording density with high thermal stability, and having a high write-ability while maintaining high magnetic anisotropy energy. In one embodiment, a perpendicular magnetic recording medium has a soft-magnetic underlayer, and magnetic recording layers, and the magnetic recording layers comprises a first recording layer containing magnetic grains oriented in a direction normal to a medium plane, and a second recording layer containing magnetic grains tilted in a cross-track direction. There can be provided a perpendicular magnetic recording medium resistant to thermal fluctuation, small in medium noise, and excellent in write-ability.
摘要:
Disclosed are a perpendicular magnetic recording medium with lower medium noise, insusceptible to thermal fluctuation and high recording resolution and a method of manufacturing it. As the step of forming a metal layer at the time of forming a recording layer on a non-magnetic substrate via a plurality of underlayers and the step of forming an oxide layer with an average thickness of 0.2 nm or less are repeated, the crystal grains are magnetically isolated without disturbing the orientation of the crystal grain of the recording layer of the perpendicular magnetic recording medium or without degrading the magnetic characteristic of the crystal grain of the recording layer.
摘要:
A heat exchange element of a plate type heat exchanger consists of a plurality of heat transmission plates having an equivalent shape. Each heat transmission plate is formed with flanged through-holes and openings so that each flanged through-hole and each opening are alternately located and separate from each other by a predetermined peripheral distance along a circle of the heat transmission plate. The heat transmission plates are disposed one upon another and sealingly secured to each other in such a manner that one of adjacent heat transmission plates is shifted the predetermined peripheral distance along the circle relative to the other heat transmission plate, thereby enabling to produce the heat exchanger heat exchange element by using only the heat transmission plates of the equivalent shape.
摘要:
Embodiments of the present invention provide a perpendicular magnetic recording media having excellent resolution, signal to noise ratio (S/N), and a small adjacent track erasure. According to one embodiment, underlayers for controlling the orientation and segregation of a magnetic layer, a magnetic layer including an oxide and an alloy of magnetic materials mainly composed of Co, Cr, and Pt, and a ferromagnetic-metal layer which does not contain oxygen, are formed over a substrate. The magnetic layer has at least two layers including ferromagnetic grains and oxides, a first magnetic layer, which is the part of the magnetic layer closer to the substrate, has grain boundaries mainly composed of Cr oxide and at least one oxide selected from Si, Ti, Nb, and Ta, and grain boundaries of a second magnetic layer at the ferromagnetic-metal layer side includes at least one oxide selected from Si, Ti, Nb, and Ta in which Cr oxide is less than the first magnetic layer.
摘要:
Disclosed are a perpendicular magnetic recording medium with lower medium noise, insusceptible to thermal fluctuation and high recording resolution and a method of manufacturing it. As the step of forming a metal layer at the time of forming a recording layer on a non-magnetic substrate via a plurality of underlayers and the step of forming an oxide layer with an average thickness of 0.2 nm or less are repeated, the crystal grains are magnetically isolated without disturbing the orientation of the crystal grain of the recording layer of the perpendicular magnetic recording medium or without degrading the magnetic characteristic of the crystal grain of the recording layer.