摘要:
A silicon nitride sintered body comprising .alpha.-silicon nitride including .alpha.'-sialon and .beta.'-sialon including .beta.-silicon nitride in which the content of the .alpha.-silicon nitride including .alpha.'-sialon in the surface part thereof is less than its content in the inner part thereof. The silicon nitride sintered body is excellent in mechanical strength at ordinary temperature, productivity and cost efficiency.
摘要:
Described are sintered silicon nitride bodies useful as materials for parts required to have strength, especially excellent impact strength for items such as automobile parts and machine parts. The sintered Si.sub.3 N.sub.4 bodies contain 80-98 wt. % of silicon nitride and have a porosity not higher than 3% and an shock compressive elasticity limit of at least 15 GPa.
摘要翻译:描述了可用作对于诸如汽车部件和机器部件的物品具有强度,特别优异的冲击强度的部件的材料的烧结氮化硅体。 烧结的Si 3 N 4体含有80-98wt。 %的氮化硅,并且具有不高于3%的孔隙率和至少15GPa的冲击压缩弹性极限值。
摘要:
A method of producing a silicon nitride ceramic component, comprising: grinding a silicon nitride sintered body comprising .alpha.--Si.sub.3 N.sub.4 having an average grain size of 0.5 .mu.m or smaller and .beta.'-sialon having an average grain size of 3 .mu.m or smaller in major axis and 1 .mu.m or smaller in minor axis into a predetermined size with a surface roughness of 1-7 .mu.m in ten-point mean roughness; heat treating the same at temperature range of 800.degree.-1200.degree. C. in the air; and standing it to allow to be cooled, whereby providing a residual stress in the ground surface before and after the heat treating as a residual compressive stress at a ratio of 1 or higher of the residual compressive stress after the heat treating to that before the heat treating (residual compressive stress after the heat treating/residual compressive stress before the heat treating), preferably 5 or more.
摘要翻译:一种氮化硅陶瓷成分的制造方法,其特征在于,包括:研磨包含平均粒径为0.5μm以下的α-Si 3 N 4,平均粒径为3μm以下的β'赛隆的氮化硅烧结体 长轴和1μm或更小的短轴成预定尺寸,十点平均粗糙度的表面粗糙度为1-7μm; 在空气中在800〜1200℃的温度范围进行热处理; 并将其放置以允许冷却,由此在热处理之前和之后的地面中提供作为残余压应力的残余应力在热处理后的剩余压缩应力为1或更高的比例 处理(热处理后的残余压应力/热处理前的残余压应力)优选为5以上。
摘要:
A ceramic die for cutting and shaping lead frames, in which at least a working section thereof is made of a specific ceramic material having an iron and cobalt content of less than 100 ppm in total. The ceramic die can be formed in a complex shape with a high precision and has a prolonged lifetime because of its superior mechanical properties, such as high wear resistance and high strength, and less probability of adhesion of foreign matter such as solder or the lead frame material thereto. Even if the solder or lead frame material is adhered onto the die, the adhered matter can be removed through a simple procedure in a shortened time. The die is further improved by depositing a hard carbon film onto the surface of the working section.
摘要:
A silicon nitride sintered body characterized by comprising crystal grains having a linear density of 60 to 120 per 50 .mu.m length as measured in an arbitrary two-dimensional section of the sintered body. The silicon nitride sintered body has a shock compressive elasticity limit (Hugoniot-elastic limit) of 15 GPa or more and is substantially composed of crystal phases of .alpha.-silicon nitride and .beta.'-sialon. The percentages of the .alpha.-silicon nitride and .beta.'-sialon are not more than 30% and not less than 70%, respectively. The silicon nitride sintered body is particularly excellent in mechanical strengths at room temperature as well as in productivity and cost efficiency and is useful for applications as the material of parts where a particularly high impact strength is required, such as a valve train mechanism for automobile parts.
摘要:
The present invention relates to a silicon nitride sintered body [wherein the composition of Si.sub.3 N.sub.4 -first aid (Y.sub.2 O.sub.3 +MgO)-second aid (at least one of Al.sub.2 O.sub.3 and AlN)] falls within a range defined by lines joining points A, B, C and D in FIG. 1, the crystal phase of the sintered body contains both .alpha.-Si.sub.3 N.sub.4 and .beta.'-sialon, and the relative density is 98% or more. This sintered body is produced by subjecting a green compact of the above-described source to primary sintering in a nitrogen gas atmosphere at 1300.degree. to 1700.degree. C. so that the relative density reaches 96% or more, and the precipitation ratio of the .alpha.-Si.sub.3 N.sub.4 crystal phases to the .beta.'-sialon crystal phase in the sintered body is in the range of from 40:60 to 80:20; and then subjecting the primary sintered body to secondary sintering in a nitrogen gas atmosphere at 1300.degree. to 1700.degree. C. so that the relative density reaches 98% or more. The sintered body has superior strength properties, especially at ordinary temperatures, and can be produced with a high productivity in a high yield at a low cost.
摘要:
Disclosed is a silicon nitride sintered body produced by subjecting a green compact of a mixed powder composed of 1) a silicon nitride powder having a percentage .alpha. crystallization of 93% or more and a mean grain diameter of 0.7 .mu.m or less and 2) 5 to 15% by weight in total of a first sintering aid selected from among rare earth element, yttrium oxide and lanthanide oxides and a second sintering aid consisting of aluminum oxide or nitride and at least one selected from among oxides and nitrides of Mg, Ca and Li, to primary sintering in a nitrogen gas atmosphere under a pressure of 1.1 atm or less at 1500.degree. to 1700.degree. C.; and subjecting the sintered body to secondary sintering in a nitrogen gas atmosphere under a pressure of 10 atm or more at the primary sintering temperature or below, thereby giving a sintered body wherein the relative density of the sintered body is 99% or more and the precipitation ratio of an .alpha.-Si.sub.3 N.sub.4 (including .beta.'-sialon) crystal phase ranges from 1:3 to 1:8 in terms of the peak intensity ratio in X-ray diffraction.
摘要:
The present invention provides an improved adjusting shim used in a valve train for an internal combustion engine for an automobile. The adjusting shim produced from a base material consisting of a ceramic material containing 80 to 98 wt. % of silicon nitride and/or sialon and has a porosity of not more than 3%, a bending strength of not less than 1.0 GPa and an impact compressive elastic limit (Hugoniot elastic limit) of not less than 15 GPa, wherein the base material is provided on the surface thereof which contacts a cam with a ceramic surface layer having a composition different from that of the base material and a hardness lower than that of the base material. The adjusting shim of the present invention enables a power loss of a valve train to be minimized; the abrasion resistance thereof to be improved; and the fuel economy, the performance and durability of an internal combustion engine to be improved.
摘要:
The present invention relates to a silicon nitride sintered body [wherein the composition of Si.sub.3 N.sub.4 -first aid (Y.sub.2 O.sub.3 +MgO)-second aid (at least one of Al.sub.2 O.sub.3 and AlN)] falls within a range defined by lines joining points A, B, C and D in FIG. 1, the crystal phase of the sintered body contains both .alpha.-Si.sub.3 N.sub.4 and .beta.'-sialon, and the relative density is 98% or more. This sintered body is produced by subjecting a green compact of the above-described source to primary sintering in a nitrogen gas atmosphere at 1300 to 1700.degree. C. so that the relative density reaches 96% or more, and the precipitation ratio of the .alpha.-Si.sub.3 N.sub.4 crystal phases to the .beta.'-sialon crystal phase in the sintered body is in the range of from 40:60 to 80:20; and then subjecting the primary sintered body to secondary sintering in a nitrogen gas atmosphere at 1300 to 1700.degree. C. so that the relative density reaches 98% or more. The sintered body has superior strength properties, especially at ordinary temperatures, and can be produced with a high productivity in a high yield at a low cost.
摘要翻译:本发明涉及一种氮化硅烧结体[其中,Si 3 N 4 - 急救(Y 2 O 3 + MgO) - 辅助剂(Al 2 O 3和AlN中的至少一种)的组成]落在由连接点A,B, C和D。 如图1所示,烧结体的结晶相含有α-Si 3 N 4和β'-Sialon,相对密度为98%以上。 该烧结体是通过使上述源的生坯在1300〜1700℃的氮气气氛中进行一次烧结而制成的,使得相对密度达到96%以上, Si3N4晶相与烧结体中的β' - 赛隆结晶相的比例范围为40:60至80:20; 然后在1300〜1700℃的氮气气氛中使一次烧结体进行二次烧结,使得相对密度达到98%以上。 该烧结体具有优异的强度特性,特别是在普通温度下,可以低成本高产率地以高生产率生产。
摘要:
A grind-machining method of ceramic materials characterized in that a peripheral speed of a grinding wheel relative to a working surface is set to 50 to 300 m/sec, a feed stroke speed of the working surface of the grinding wheel in a working direction is set to 50 to 200 m/min, and preferably, a down-feed speed of the working surface of the grinding wheel in a direction orthogonal to the surface of the workpiece is set to 0.05 to 3 mm/min. The grind-machining method of ceramic materials can reduce a grinding force at the time of grinding of ceramic materials and residual defects due to machining, and at the same time, can accomplish high machining efficiency.