摘要:
There is provided that a method for producing a resin pattern, and the method includes at least the steps (1) to (7) in this order; (1) a coating step of coating a photosensitive resin composition on a substrate; (2) a solvent removal step of removing the solvent from the applied photosensitive resin composition; (3) an exposure step of patternwise exposing the photosensitive resin composition from which the solvent has been removed, to an active radiation; (4) a development step of developing the exposed photosensitive resin composition using an aqueous developer liquid; (5) an overcoating step of providing an overcoat layer on the developed photosensitive resin composition; (6) a heat-treating step of heat-treating the photosensitive resin composition on which the overcoat layer has been provided; and (7) a removal step of removing the overcoat layer.
摘要:
The invention provides a shock absorbing structure capable of turning the function of the shock absorber on and off according to the level of shock during collision, thereby reducing the frequency of replacing shock absorbers. On a rear surface of a load operating unit 11 constituting a shock absorbing device 10A are attached a load transmitting shaft 12 and a shock absorber 13. The load transmitting shaft 12 is passed through the center of the shock absorber and is connected to a supporting unit 14 via a pin 15 that extends toward the radial direction. The rear end of the shock absorber 13 faces the supporting unit 14 with a clearance therebetween. The pin 15 has notched grooves 21 formed thereto. When small load is applied, the load is transmitted from the load operating unit 11 through the load transmitting shaft 12, the pin 15 and the supporting unit 14 to the main body, so that the load is not applied on the shock absorber 13. When large load is applied, the pin 15 breaks from where the notched grooves 21 are formed, by which the surface of the closing plate 17 collides against the supporting unit 14, so that the load is transmitted to the shock absorber 13 and the shock is absorbed effectively.
摘要:
The invention provides: a photosensitive composition which has a high deformation restorability and may eliminate display unevenness in a liquid crystal display device, a photosensitive resin transfer film and a method for producing a photospacer using the composition or the film; and a liquid crystal display device substrate and a liquid crystal display device which may eliminate display unevenness and thus display high quality images. The photosensitive composition includes: a resin (A) including a group having a cyclic structure including two or more heteroatoms in a side chain, a group having an acidic group in a side chain, and a group having an ethylenically unsaturated group in a side chain; a polymerizable compound (B); and a photopolymerization initiator (C).
摘要:
A car structure is provided which has the required strength against vertical load and vibration while avoiding increase in weight of the structure. At an entrance 6 of the railroad car structure 20 in which a side structure 2 is formed by a hollow member, the side structure 2 and a frame 7 are coupled via an L-shaped fitting 10. The L-shaped fitting 10 consists of a first joint part 10a which is in the form of a plate and couples a vehicle outer face plate 8 and a vehicle inner face plate 9 and a second joint part 10b which is in the form of a plate and butt welds a part of the first joint part 10a near the vehicle outer face plate 8 and the frame 7. Plate thickness of the second joint plate 10b is larger than plate thickness of the vehicle outer face plate 8. As a result, the required strength against vertical load can be ensured without increasing the plate thickness of the vehicle outer face plate 8, in other words, with little increase in weight of the structure.
摘要:
The present invention provides a steel material for automobile chassis parts, having high fatigue characteristics, without a heat treatment, and superior shapeability, and a method of production of such automobile chassis parts. The surface of the steel has a high hardness and the center has a low hardness, providing the superior characteristics. With an annealing step of the invention, it is possible to relieve internal stress and further improve fatigue characteristics.
摘要:
A colored photosensitive resin composition comprising (1) an alkali-soluble binder, (2) a monomer or an oligomer, (3) a photopolymerizaton initiator or a photopolymerization initiator system, and (4) a coloring agent, wherein the coloring agent is a specific pigment in a specific quantity. Also provided is a color filter obtained by using the colored photosensitive resin compositions for formation of the respective photosensitive resin layers of R, G and B.
摘要:
A method for fabricating a phase change memory device comprises forming a heater electrode in an interlayer insulating film to penetrate through the interlayer insulating film, forming an insulating layer on the interlayer insulating film in which the heater electrode is formed, forming a tapered hole in the insulating layer to expose a center of a top surface of the heater electrode, thinning the insulating layer by removing a part of the insulating layer in which the hole is formed, and forming a phase change layer on the insulating layer after thinning the insulating layer so as to fill the hole.
摘要:
The invention provides a transportation device having a shock absorbing device with a reduced non-collapse region. Shock absorbers 14 and 17 constituting a shock absorbing device 10A provided on a transportation device is connected respectively to shock absorbers 17 and 20 disposed rearward therefrom via connecting members 23 and 26 having ashtray-like cross-sectional shapes. The shock absorber 20 disposed at the rearmost position is connected via welding to a base 29. Collapse regions 15, 18 and 21 of the shock absorbers 14, 17 and 20 are collapsed by the load applied to the shock absorbers 14, 17 and 20, and their lengths are shortened. Non-collapse regions 16 and 19 of the shock absorbers 14 and 17 overlap respectively with the non-collapse regions 19 and 22 of the shock absorbers 17 and 20 disposed rearward therefrom. Therefore, the non-collapse regions 16, 19 and 22 fit within a recessed portion of the connecting members 23 and 26, and the overall longitudinal length of the non-collapse regions of the shock absorbing device can be shortened.