摘要:
An arrangement of semiconductor chips is provided. The arrangement includes a plurality of stacked semiconductor chips each including an integrated circuit. At least one via is formed through the thickness of at least one of the semiconductor chips. A carbon nanotube conductor is formed in the via. The conductor has first and second opposite ends. The first end of the conductor is selectively interconnected with the integrated circuit of its semiconductor chip and the second end of the conductor is selectively interconnected with the integrated circuit of another of the semiconductor chips.
摘要:
A method of fabricating a damascene interconnection is provided. The method begins by forming on a substrate a low k dielectric layer and a resist pattern over the low k dielectric layer to define a first interconnect opening. The low k dielectric layer is etched through the resist pattern to form the first interconnect opening, whereby damage arises to a portion of the low k dielectric layer defining a sidewall of the first interconnect opening. The resist pattern is then removed and a barrier layer is applied to line the first interconnect opening. An interconnection is formed by filling the first interconnect opening with a conductive material. The interconnection is planarized to remove excess material, whereby an underlying portion of the low k dielectric layer is damaged during planarizing. The damaged underlying portion of the low k dielectric layer and the damaged sidewall portion of the low k dielectric layer are both repaired at least in part after performing the planarizing step.
摘要:
A method is provided of fabricating a damascene interconnection. The method begins by forming on a substrate a first dielectric layer, a capping layer on the first dielectric sublayer and a resist pattern over the capping layer to define a first interconnect opening. The capping layer and the dielectric layer are etched through the resist pattern to form the first interconnect opening. The resist pattern is removed and a barrier layer is applied over the capping layer and in the first interconnect opening. An interconnection is formed by filling the first interconnect opening with conductive material. The interconnection is planarized to remove excess material and a portion of the first dielectric layer damaged by the planarizing step is selectively etched. A second dielectric layer is applied to replace the damaged portion of the first dielectric.
摘要:
A method is provided of fabricating a damascene interconnection. The method begins by forming on a substrate a first dielectric layer, a capping layer on the first dielectric sublayer and a resist pattern over the capping layer to define a first interconnect opening. The capping layer and the dielectric layer are etched through the resist pattern to form the first interconnect opening. The resist pattern is removed and a barrier layer is applied over the capping layer and in the first interconnect opening. An interconnection is formed by filling the first interconnect opening with conductive material. The interconnection is planarized to remove excess material and a portion of the first dielectric layer damaged by the planarizing step is selectively etched. A second dielectric layer is applied to replace the damaged portion of the first dielectric.
摘要:
An arrangement of semiconductor chips is provided. The arrangement includes a plurality of stacked semiconductor chips each including an integrated circuit. At least one via is formed through the thickness of at least one of the semiconductor chips. A carbon nanotube conductor is formed in the via. The conductor has first and second opposite ends. The first end of the conductor is selectively interconnected with the integrated circuit of its semiconductor chip and the second end of the conductor is selectively interconnected with the integrated circuit of another of the semiconductor chips.
摘要:
A structure with improved electromigration resistance and methods for making the same. A structure having improved electromigration resistance includes a bulk interconnect having a dual layer cap and a dielectric capping layer. The dual layer cap includes a bottom metallic portion and a top metal oxide portion. Preferably the metal oxide portion is MnO or MnSiO and the metallic portion is Mn or CuMn. The structure is created by doping the interconnect with an impurity (Mn in the preferred embodiment), and then creating lattice defects at a top portion of the interconnect. The defects drive increased impurity migration to the top surface of the interconnect. When the dielectric capping layer is formed, a portion reacts with the segregated impurities, thus forming the dual layer cap on the interconnect. Lattice defects at the Cu surface can be created by plasma treatment, ion implantation, a compressive film, or other means.
摘要:
A method patterns at least one opening in a low-K insulator layer of a multi-level integrated circuit structure, such that a copper conductor is exposed at the bottom of the opening. The method then lines the sidewalls and the bottom of the opening with a first Tantalum Nitride layer in a first chamber and forms a Tantalum layer on the first Tantalum Nitride layer in the first chamber. Next, sputter etching on the opening is performed in the first chamber, so as to expose the conductor at the bottom of the opening. A second Tantalum Nitride layer is formed on the conductor, the Tantalum layer, and the first Tantalum Nitride layer, again in the first chamber. After the second Tantalum Nitride layer is formed, the methods herein form a flash layer comprising a Platinum group metal on the second Tantalum Nitride layer in a second, different chamber.
摘要:
An interconnect structure located on a semiconductor substrate within a dielectric material positioned atop the semiconductor substrate is provided having an opening within the dielectric material, the opening includes an electrically conductive material extending from the bottom to the top, and contacting the sidewall; a first layer located on the sidewall of the opening, the first layer is made from a material including titanium oxide or titanium silicon oxide; a second layer located between the first layer and the electrically conductive material, the second layer is made from a material selected from the group TiXOb, TiXSiaOb, XOb, and XSiaOb, X is Mn, Al, Sn, In, or Zr; and a third layer located along a top surface of the electrically conductive material, the third layer is made from a material selected from the group TiXOb, TiXSiaOb, XOb, and XSiaOb, X is Mn, Al, Sn, In, or Zr.
摘要:
Interconnect structures and methods of manufacturing the same are disclosed herein. The method includes forming a barrier layer within a structure and forming an alloy metal on the barrier layer. The method further includes forming a pure metal on the alloy metal, and reflowing the pure metal such that the pure metal migrates to a bottom of the structure, while the alloy metal prevents exposure of the barrier layer. The method further includes completely filling in the structure with additional metal.
摘要:
An interconnect structure and method for fabricating the interconnect structure having enhanced performance and reliability, by minimizing oxygen intrusion into a seed layer and an electroplated copper layer of the interconnect structure, are disclosed. At least one opening in a dielectric layer is formed. A sacrificial oxidation layer disposed on the dielectric layer is formed. The sacrificial oxidation layer minimizes oxygen intrusion into the seed layer and the electroplated copper layer of the interconnect structure. A barrier metal layer disposed on the sacrificial oxidation layer is formed. A seed layer disposed on the barrier metal layer is formed. An electroplated copper layer disposed on the seed layer is formed. A planarized surface is formed, wherein a portion of the sacrificial oxidation layer, the barrier metal layer, the seed layer, and the electroplated copper layer are removed. In addition, a capping layer disposed on the planarized surface is formed.