摘要:
A numerical control device includes a retraction-direction decision unit that decides a retracting direction of the tool when determining that the tool deviates from the movable range, and a tool-locus correction unit that corrects a locus of the tool based on this retracting direction so that a distance between the tool and a rotation center of a table while retracting is equal to or larger than a distance between the tool and the rotation center of the table at a time of either the start of rotation of the table or the end of the rotation of the table. According to the present invention, it is possible to avoid a stroke-over while avoiding interference between the tool and a workpiece when a table rotation command that possibly causes a stroke-over on the linear axis is issued while executing a control on a coordinate system other than a machine coordinate system.
摘要:
A CPU 41 reads a next block (S1), and then determines whether the read block is a TCP (tool center point) control finish command “G49” or not (S2). If it is determined to be the TCP control finish command “G49”, the TCP control is finished. If it is determined not to be the TCP control finish command “G49”, whether the read block is a coordinate-system transformation command “P1” or not is determined (S3). Next, if it is determined not to be the coordinate-system transformation command “P1”, the TCP control is performed, without transforming the coordinate system, in accordance with a command of the block (S11). Next, the process returns to S1, and then the process after S1 is executed. If it is determined to be the coordinate-system transformation command “P1”, a start point (xs, ys, zs, bs, cs) and an end point (xe, ye, ze, be, ce) in a non-machine coordinate system, of the block are transformed into a start point (Xs, Ys, Zs, Bs, Cs) and an end point (Xe, Ye, Ze, Be, Ce) in a machine coordinate system, respectively (S4).
摘要:
A CPU 41 reads a next block (S1), and then determines whether the read block is a TCP (tool center point) control finish command “G49” or not (S2). If it is determined to be the TCP control finish command “G49”, the TCP control is finished. If it is determined not to be the TCP control finish command “G49”, whether the read block is a coordinate-system transformation command “P1” or not is determined (S3). Next, if it is determined not to be the coordinate-system transformation command “P1”, the TCP control is performed, without transforming the coordinate system, in accordance with a command of the block (S11). Next, the process returns to S1, and then the process after S1 is executed. If it is determined to be the coordinate-system transformation command “P1”, a start point (xs, ys, zs, bs, cs) and an end point (xe, ye, ze, be, ce) in a non-machine coordinate system, of the block are transformed into a start point (Xs, Ys, Zs, Bs, Cs) and an end point (Xe, Ye, Ze, Be, Ce) in a machine coordinate system, respectively (S4).
摘要:
When performing the processing while changing the position and the posture of the tool relative to the work, if the speed of the tool tip point relative to the work is regularly controlled while greatly changing the tool posture, the speed of each driving shaft of the machine is increased, whereby the interference may be generated. In order to solve the problem, in the numerical controller which obtains the position of each driving shaft of the machine performing the determination of the feeding speed, the interpolation and the coordinate conversion according to the relative instruction path and the instruction speed of the tool tip point relative to the work instructed to the processing program, when determining the feeding speed, the reference point is provided on the tool or the table, the translation speed of the reference point viewed from the mechanical coordinate system is set to the observation target speed, the reference feeding speed is obtained so that the observation target speed is a predetermined reference speed, and the smaller of the reference feeding speed and the instruction feeding speed is set to the feeding speed.
摘要:
A numerical controller obtains a position of each driving shaft of a machine performing determination of a feeding speed, interpolation and coordinate conversion according to a relative instruction path and an instruction speed of a tool tip point relative to a work instructed to a processing program. When determining the feeding speed, a reference point is provided on a tool or a table, a translation speed of the reference point viewed from a mechanical coordinate system is set to an observation target speed, a reference feeding speed is obtained so that the observation target speed is a predetermined reference speed, and the smaller of the reference feeding speed and the instruction feeding speed is set to the feeding speed.
摘要:
A numerical control apparatus includes: a program input unit that reads a tool distal end position and a tool posture and generates designated position sequences of the linear axis and designated position sequences of the rotation axis; a distal-end-position-curve generating unit that generates a tool distal end position curve concerning the tool distal end position; a tool-posture-curve generating unit that generates a tool posture curve concerning the tool posture associated with movements of the tool distal end position; an interpolation calculating unit that calculates an interpolation point of the tool distal end position, calculates an interpolation point of the tool posture, and calculates an interpolation point of a machine position of the linear axis; and an interpolation output unit that moves the linear axis to the calculated interpolation point of the machine position and moves the rotation axis to the calculated interpolation point of the tool posture.
摘要:
A numerical control apparatus includes: a program input unit that reads a tool distal end position and a tool posture and generates designated position sequences of the linear axis and designated position sequences of the rotation axis; a distal-end-position-curve generating unit that generates a tool distal end position curve concerning the tool distal end position; a tool-posture-curve generating unit that generates a tool posture curve concerning the tool posture associated with movements of the tool distal end position; an interpolation calculating unit that calculates an interpolation point of the tool distal end position, calculates an interpolation point of the tool posture, and calculates an interpolation point of a machine position of the linear axis; and an interpolation output unit that moves the linear axis to the calculated interpolation point of the machine position and moves the rotation axis to the calculated interpolation point of the tool posture.
摘要:
To generate a control command for performing machining while reducing useless machining as much as possible, in an automatic programming apparatus, a machining-process-data generating/editing unit generates machining shapes (second machining shapes) for each of machining processes from each of an externally-input plurality of machining shapes (first machining shapes), a tool/machining order/tool direction editing unit 4 receives an input of execution order of the machining processes, a machining-process adjusting unit deforms, concerning a plurality of machining shapes having a same tool direction among the second machining shapes, one machining shape among the plurality of machining shapes such that machining can be executed in the input execution order (step S1722), deletes, from another machining shape that overlaps the one machining shape because of the deformation of the one machining shape, a portion of the overlap (step S1724), and generates a third machining shape, and a control-command generating unit generates, based on the third machining shape and the input execution order, a control command for causing a machine tool to operate.
摘要:
A numerical control device for a working machine capable of controlling a tool posture relative to a workpiece using rotational driving of a rotary drive axis about a machine control point includes: an interpolation unit that performs an interpolation process on moving data generated from a machining program and outputs a position of the machine control point for each interpolation point; a coordinate transformation unit that transforms a position of the machine control point to a tool tip-point position; a stroke-limit determination unit that determines whether the position of the machine control point and the tool tip-point position fall within a range of a movable region, and selects and outputs a stroke limit signal indicating a stroke limit and a tool-posture changing command for instructing change of the tool posture; and a tool-posture changing unit that changes the tool posture in response to the tool-posture changing command.
摘要:
An automatic programming apparatus includes a machining-shape generating unit configured to generate second machining shapes for each of machining processes from each of a plurality of first machining shapes input from outside; a machining-order editing unit configured to receive an input of execution order of the machining processes; a machining-shape adjusting unit configured to extend, among a plurality of the second machining shapes having a same tool direction, which is a direction that a tool pierces, one of the second machining shapes in a direction opposite to the tool direction, delete, from the other machining shape that overlaps the one second machining shape because of the extension of the one second machining shape, a portion of the overlap, and generate a third machining shape; and a control-command generating unit configured to generate, based on the third machining shape and the input execution order, a control command.