摘要:
Provided is a method of manufacturing a semiconductor device. After a semiconductor wafer is placed over a wafer stage with which a dry cleaning chamber of a film forming apparatus is equipped, dry cleaning treatment is given over the surface of the semiconductor wafer with a reducing gas. Then, the semiconductor wafer is heat treated at a first temperature of from 100 to 150° C. by using a shower head kept at 180° C. The semiconductor wafer is then vacuum-transferred to a heat treatment chamber, wherein the semiconductor wafer is heat treated at a second temperature of from 150 to 400° C. A product remaining over the main surface of the semiconductor wafer is thus removed. The present invention makes it possible to manufacture a semiconductor device having improved reliability and production yield by reducing variations in the electrical properties of a nickel silicide layer.
摘要:
Provided is a method of manufacturing a semiconductor device. After a semiconductor wafer is placed over a wafer stage with which a dry cleaning chamber of a film forming apparatus is equipped, dry cleaning treatment is given over the surface of the semiconductor wafer with a reducing gas. Then, the semiconductor wafer is heat treated at a first temperature of from 100 to 150° C. by using a shower head kept at 180° C. The semiconductor wafer is then vacuum-transferred to a heat treatment chamber, wherein the semiconductor wafer is heat treated at a second temperature of from 150 to 400° C. A product remaining over the main surface of the semiconductor wafer is thus removed. The present invention makes it possible to manufacture a semiconductor device having improved reliability and production yield by reducing variations in the electrical properties of a nickel silicide layer.
摘要:
A barrier layer is formed at a bottom portion, for example, of a through hole. The thickness of the barrier layer at an upper area, for example, of the through hole is made uniform. The method of manufacturing a semiconductor device includes the steps of: forming a barrier layer by sputtering on a main surface of a silicon substrate while maintaining a first distance between a main surface of the target and the main surface of the silicon substrate; and forming a titanium nitride layer by sputtering on and adjacent to a titanium nitride layer by scattering a target material while maintaining a second distance longer than the first distance between the main surface of the target and the main surface of the silicon substrate.
摘要:
A method of producing a semiconductor device having a polymetal wiring structure fabricated by a polycrystalline silicon film, a reaction preventing film, and a tungsten film comprising steps of forming a polycrystalline silicon film 4 and a tungsten nitride film 13 on a silicon substrate 1; forming a tungsten film 14 using a target of tungsten containing fluorine of 10 ppm or less by a sputtering method; and forming a gate electrode 15 by patterning a polycrystalline silicon film 4, the tungsten nitride film 13, and the tungsten film 14, whereby a content of fluorine can be reduced, a film separation is prevented, and a preferable transistor property is obtainable.
摘要:
The semiconductor device with the alignment mark includes a convex portion as a film growth control region for forming side surfaces approximately parallel to sidewalls on surfaces opposite to the sidewalls of first metal interconnection layer formed in a recess portion of the alignment mark at the time of deposition of first metal interconnection layer. Thus, the semiconductor device with the alignment mark and manufacturing method thereof allowing the easy and accurate detection of the location of a layer deposited on side surfaces of the alignment mark can be provided.