摘要:
A method for manufacturing a microelectrode includes one of allocating organic molecules or forming an organic molecular layer on a first substrate, applying a release agent onto a desired pattern formed on a second substrate, attaching an electrode material to the release agent, and bonding a surface of the second substrate to which the electrode material is attached and a surface of the first substrate on which the organic molecules are allocated or the organic molecular layer is formed to transfer the electrode material to the first substrate.
摘要:
A solution containing polymer-bound metal nanoparticles is deposited onto a substrate, at least the surface of which is insulating, to form a pattern, the substrate is dried, and then the pattern is subjected to plasma exposure.
摘要:
A temperature measuring probe is characterized in that it has a film 4 on a part of a first surface of a cantilever 2 having an opening in the center, the film 4 is formed of a material different in coefficient of thermal expansion from the cantilever 2, it has a film 5 on a part of a surface of the cantilever 2 opposite to the first surface, the film 5 is formed of the same material as the film 4, and when the films 4 and 5 are projected onto a plane parallel to the cantilever 2, the projection image of the film 4 and the projection image of the film 5 do not coincide. Thus, a temperature measuring probe and a temperature measuring apparatus can be made that can be used with a general-purpose scanning probe microscope and is insusceptible to thermal deformation of a sample.
摘要:
A method of producing a material capable of electrochemically storing and releasing a large amount of lithium ions is provided. The material is used as an electrode material for a negative electrode, and includes silicon or tin primary particles composed of crystal particles each having a specific diameter and an amorphous surface layer formed of at least a metal oxide, having a specific thickness. Gibbs free energy when the metal oxide is produced by oxidation of a metal is smaller than Gibbs free energy when silicon or tin is oxidized, and the metal oxide has higher thermodynamic stability than silicon oxide or tin oxide. The method of producing the electrode material includes reacting silicon or tin with a metal oxide, reacting a silicon oxide or a tin oxide with a metal, or reacting a silicon compound or a tin compound with a metal compound to react with each other.
摘要:
A method of producing a material capable of electrochemically storing and releasing a large amount of lithium ions is provided. The material is used as an electrode material for a negative electrode, and includes silicon or tin primary particles composed of crystal particles each having a specific diameter and an amorphous surface layer formed of at least a metal oxide, having a specific thickness. Gibbs free energy when the metal oxide is produced by oxidation of a metal is smaller than Gibbs free energy when silicon or tin is oxidized, and the metal oxide has higher thermodynamic stability than silicon oxide or tin oxide. The method of producing the electrode material includes reacting silicon or tin with a metal oxide, reacting a silicon oxide or a tin oxide with a metal, or reacting a silicon compound or a tin compound with a metal compound to react with each other.
摘要:
A method of producing a material capable of electrochemically storing and releasing a large amount of lithium ions is provided. The material is used as an electrode material for a negative electrode, and includes silicon or tin primary particles composed of crystal particles each having a specific diameter and an amorphous surface layer formed of at least a metal oxide, having a specific thickness. Gibbs free energy when the metal oxide is produced by oxidation of a metal is smaller than Gibbs free energy when silicon or tin is oxidized, and the metal oxide has higher thermodynamic stability than silicon oxide or tin oxide. The method of producing the electrode material includes reacting silicon or tin with a metal oxide, reacting a silicon oxide or a tin oxide with a metal, or reacting a silicon compound or a tin compound with a metal compound to react with each other.
摘要:
A water repellent catalyst layer for a polymer electrolyte fuel cell, including a water repellent coating film provided on catalyst particles, which are coated with a proton-conductive electrolyte, and a manufacturing method for a water repellent catalyst layer for a polymer electrolyte fuel cell including the steps of: coating catalyst particles with a proton-conductive electrolyte; providing a fluorine-based compound having at least one polar group and having a molecular weight of 10,000 or less on the catalyst particles to form a fluorine compound coating film; and imparting hydrophobic property by stabilizing the fluorine compound coating film. The hydrophobic property is imparted even to the inside of fine pores of the catalyst layer to improve water evacuation performance, so that an effective surface area and a catalyst utilization ratio can be increased.