摘要:
A mold manufacturing method of an embodiment of the present invention includes the steps of: (a) providing a mold base; (b) partially anodizing the aluminum layer to form a porous alumina layer, the porous alumina layer having a porous layer which defines a plurality of minute recessed portions and a barrier layer which is provided at a bottom of each of the plurality of minute recessed portions; and (c) after step (b), performing etching, thereby enlarging the plurality of minute recessed portions of the porous alumina layer, wherein in step (c) the etching is performed such that an average depth of the plurality of minute recessed portions increases but does not exceed a 1/7 of an average thickness of the barrier layer before the etching.
摘要:
A mold manufacturing method of an embodiment of the present invention includes the steps of: (a) providing a mold base; (b) partially anodizing the aluminum layer to form a porous alumina layer, the porous alumina layer having a porous layer which defines a plurality of minute recessed portions and a barrier layer which is provided at a bottom of each of the plurality of minute recessed portions; and (c) after step (b), performing etching, thereby enlarging the plurality of minute recessed portions of the porous alumina layer, wherein in step (c) the etching is performed such that an average depth of the plurality of minute recessed portions increases but does not exceed a 1/7 of an average thickness of the barrier layer before the etching.
摘要:
A mold is disclosed, which is capable of producing a nanoimprint film without a problem of clogging of irregularities of the mold with a resin material. A method for producing the mold and a method for producing a nanoimprint film using the mold are further disclosed. In an embodiment, the mold includes: a first surface having a nanostructure including plural recesses spaced at an interval of less than 1 μm between bottom points of adjacent recesses; and at least two second surfaces substantially not having the nanostructure, wherein the first surface is coplanar with the at least two second surfaces and is positioned between two second surfaces.
摘要:
A method is provided for manufacturing a mold that has a porous alumina layer over its surface, which is capable of preventing formation of pits (recesses). A moth-eye mold manufacturing method of an embodiment of the present invention is a method for manufacturing a mold which has a porous alumina layer over its surface, including the steps of: providing a mold base which includes an aluminum base and an aluminum film deposited on a surface of the aluminum base, the aluminum film having a purity of not less than 99.99 mass %; anodizing a surface of the aluminum film to form a porous alumina layer which has a plurality of minute recessed portions; and bringing the porous alumina layer into contact with an etching solution to enlarge the plurality of minute recessed portions of the porous alumina layer.
摘要:
A mold is disclosed, which is capable of producing a nanoimprint film without a problem of clogging of irregularities of the mold with a resin material. A method for producing the mold and a method for producing a nanoimprint film using the mold are further disclosed. In an embodiment, the mold includes: a first surface having a nanostructure including plural recesses spaced at an interval of less than 1 μm between bottom points of adjacent recesses; and at least two second surfaces substantially not having the nanostructure, wherein the first surface is coplanar with the at least two second surfaces and is positioned between two second surfaces.
摘要:
An anodized layer formation method includes: providing an aluminum film provided on a support or an aluminum base; and forming a porous alumina layer which has minute recessed portions by applying a voltage between an anode which is electrically coupled to a surface of the aluminum film or the aluminum base and a cathode which is provided in an electrolytic solution with the surface of the aluminum film or the aluminum base being in contact with the electrolytic solution. The forming of the porous alumina layer includes increasing the voltage to a target value and, before the voltage is increased to the target value, increasing the voltage to a first peak value which is lower than the target value and thereafter decreasing the voltage to a value which is lower than the first peak value. As such, an anodized layer with reduced variation of recessed portions can be formed.
摘要:
An anodized layer formation method of an embodiment of the present invention includes the step a of providing an aluminum film which is formed on a first principal surface of a support and the step b of anodizing a surface of the aluminum film to form a porous alumina layer which has a plurality of minute recessed portions. In the step a, a second principal surface of the support which is opposite to the first principal surface is provided with a low heat conduction member that has a predetermined pattern. According to an embodiment of the present invention, a porous alumina layer can be formed which includes regions of different minute structures in the predetermined pattern.
摘要:
A method is provided for manufacturing a mold that has a porous alumina layer over its surface, which is capable of preventing formation of pits (recesses). A moth-eye mold manufacturing method of an embodiment of the present invention is a method for manufacturing a mold which has a porous alumina layer over its surface, including the steps of: providing a mold base which includes an aluminum base and an aluminum film deposited on a surface of the aluminum base, the aluminum film having a purity of not less than 99.99 mass %; anodizing a surface of the aluminum film to form a porous alumina layer which has a plurality of minute recessed portions; and bringing the porous alumina layer into contact with an etching solution to enlarge the plurality of minute recessed portions of the porous alumina layer.
摘要:
A method for manufacturing a microelectrode includes one of allocating organic molecules or forming an organic molecular layer on a first substrate, applying a release agent onto a desired pattern formed on a second substrate, attaching an electrode material to the release agent, and bonding a surface of the second substrate to which the electrode material is attached and a surface of the first substrate on which the organic molecules are allocated or the organic molecular layer is formed to transfer the electrode material to the first substrate.
摘要:
An anodized layer formation method of an embodiment of the present invention includes the step a of providing an aluminum film which is formed on a first principal surface of a support and the step b of anodizing a surface of the aluminum film to form a porous alumina layer which has a plurality of minute recessed portions. In the step a, a second principal surface of the support which is opposite to the first principal surface is provided with a low heat conduction member that has a predetermined pattern. According to an embodiment of the present invention, a porous alumina layer can be formed which includes regions of different minute structures in the predetermined pattern.