摘要:
Efficient pilot transmission schemes for multi-antenna communication systems are described. In general, MISO receivers prefer a pilot transmitted in one spatial direction, and MIMO receivers typically require a pilot transmitted in different spatial directions. In one pilot transmission scheme, a first set of T scaled pilot symbols is generated with a first training vector and transmitted (e.g., continuously) from T transmit antennas, where T>1. If MIMO receiver(s) are to be supported by the system, then at least T−1 additional sets of T scaled pilot symbols are generated with at least T−1 additional training vectors and transmitted from the T transmit antennas. The training vectors are for different (e.g., orthogonal) spatial directions. Each MISO receiver can estimate its MISO channel based on the first set of scaled pilot symbols. Each MIMO receiver can estimate its MIMO channel based on the first and additional sets of scaled pilot symbols.
摘要:
Each transmitter is assigned a time-only pilot code, a frequency-only pilot code, or a time-frequency pilot code to use for pilot transmission. The pilot codes may be pseudo-random, orthogonal, and/or cyclic-shift codes. To obtain a channel estimate for a transmitter using a time-frequency pilot code composed of a time-only code and a frequency-only code, a receiver multiplies a set of received symbols for each symbol period with a set of code values for the frequency-only code to obtain a set of detected symbols and performs an IDFT on the set of detected symbols to obtain an initial impulse response estimate. The receiver performs code matching on multiple initial impulse response estimates derived for multiple symbol periods with the time-only code to obtain a final impulse response estimate for the desired transmitter. The receiver retains the first L channel taps and zeroes out remaining channel taps, where L is the expected channel length.
摘要:
A MIMO communication system is adapted to encode multiple data streams at the same adaptable rate. Accordingly, the set of all possible modulation/rate combinations to all modulations with common rates is decreased thus resulting in the reduction of the number of possible packet formats carrying the data streams. Rate prediction is made more error-resilient, in part, due to the averaging over all information rates. Furthermore, the signaling overhead of the packets is reduced. Therefore, the tradeoff between the desired transmission rate granularity on the one hand, and robustness/signaling overhead on the other hand, is controlled by adjusting the coding rate.
摘要:
A MIMO communication system is adapted to encode multiple data streams at the same adaptable rate. Accordingly, the set of all possible modulation/rate combinations to all modulations with common rates is decreased thus resulting in the reduction of the number of possible packet formats carrying the data streams. Rate prediction is made more error-resilient, in part, due to the averaging over all information rates. Furthermore, the signaling overhead of the packets is reduced. Therefore, the tradeoff between the desired transmission rate granularity on the one hand, and robustness/signaling overhead on the other hand, is controlled by adjusting the coding rate.
摘要:
A transmitter generates multiple composite pilots with a training matrix and a gain matrix. Each composite pilot includes multiple training pilots generated with multiple columns of the training matrix and scaled with multiple gain elements in a column of the gain matrix. The transmitter transmits each composite pilot via multiple transmit antennas. A MISO receiver obtains received symbols for the multiple composite pilots and derives an estimate of a composite MISO channel. For OFDM, the MISO receiver derives an initial impulse response estimate for each composite pilot, filters the initial impulse response estimates for all composite pilots, and derives a frequency response estimate for the composite MISO channel. A MIMO receiver obtains and processes received symbols for the multiple composite pilots based on the training and gain matrices and derives channel estimates for individual SISO channels between the multiple transmit antennas and multiple receive antennas.
摘要:
Techniques to enhance the performance in a wireless communication system using segments called subbands and using precoding are shown. According to one aspect, the bandwidth for transmission to an access terminal is constrained to a preferred bandwidth which is less than the bandwidth available for transmission to an access terminal and precoding information related to the subcarriers within the constrained bandwidth is provided to a transmitter. The precoding information related to the subcarriers within a constrained bandwidth provides feedback about the forward link channel properties relative to different subbands and may be fed back on a channel associated with the bandwidth.
摘要:
Apparatuses and methodologies are described that enhance performance in a wireless communication system using beamforming transmissions. According to one aspect, the channel quality is monitored. Channel quality indicators can be used to select a scheduling technique, such as space division multiplexing (SDM), multiple-input multiple output (MIMO) transmission and opportunistic beamforming for one or more user devices. In addition, the CQI can be used to determine the appropriate beam assignment or to update the beam pattern.
摘要:
Accordingly, a method and apparatus are provided wherein a receiver system selects a pre-coding matrix, comprising eigen-beamforming weights, to use and provides rank value and matrix index associated with the selected matrix to the transmitter system. The transmitter system upon receiving the rank value and matrix index, determine if the matrix associated with the matrix index provided by the receiver system can be used. If not, them transmitter system selects another matrix for determining eigen-beamforming weights.
摘要:
Systems and methodologies are described that facilitate improved pilot information to MIMO user devices without increasing interference of SISO user devices in a wireless communication environment. A data communication signal can be generated and transmitted at a first power level, and a continuous pilot waveform comprising pilot information related to the data signal can be generated and sent at a second power level below the first transmission power level. Alternatively, a discontinuous pilot waveform can be generated so that it does not overlap with pilot segments in the first waveform, and can be transmitted at the first power level without interfering with the first waveform as received by a SISO user device. A MIMO user device can receive both waveforms, and can employ the pilot waveform to better estimate a MIMO channel for the first waveform.
摘要:
Embodiments are described in connection with enhancing performance in a wireless communication system using codebook technology. According to an embodiment is a method for enhancing performance in a wireless communication environment. The method can include receiving a user preference for a transmission mode, associating the user preference with an entry or entries in a codebook, and assigning the user to a transmission mode corresponding to the entry or entries. The transmission mode can be one of a preceding, space division multiple access (SDMA), SDMA preceding, multiple input multiple output (MIMO), MIMO preceding, MIMO-SDMA and a diversity. Each entry can correspond to a transmission mode.