Abstract:
According to one embodiment, a MEMS element comprises a first electrode that is fixed on a substrate and has plate shape, a second electrode that is disposed above the first electrode while facing the first electrode, the second electrode being movable in a vertical direction and having plate shape, and a first film that includes a first cavity in which the second electrode is accommodated on the substrate. The second electrode is connected to an anchor portion connected to the substrate via a spring portion. An upper surface of the second electrode is connected to the first film.
Abstract:
An actuator of the present invention includes a moving part, and a driving electrode which is comprised of electrode parts electrically isolated from each other and drives the moving part. A drive voltage is applied selectively to some of the electrode parts to control an electrostatic force which acts on the moving part.
Abstract:
A semiconductor integrated circuit comprises an electrostatic actuator, an estimation circuit, a storage circuit and a bias circuit. The electrostatic actuator has a top electrode, a bottom electrode, and an insulating film disposed between the top electrode and the bottom electrode. The estimation circuit estimates the amount of a charge accumulated in the insulating film of the electrostatic actuator. The storage circuit stores a result of the estimation of the charge amount by the estimation circuit. The bias circuit changes, on the basis of the estimation result stored in the storage circuit, a drive voltage to drive the electrostatic actuator.
Abstract:
The switch of an aspect of the present invention including first and second electrodes provided on a substrate, an anchor provided on the first electrode, a movable structure of which a first end is supported by the anchor, extending from the anchor to a position above the second electrode, using a conductor, and configured to move in a vertical direction with respect to the second electrode, a contact portion provided at a second end of the movable structure and disposed above the second electrode, a film having a different stress value with respect to the stress value of the movable structure, and warping the contact portion toward the second electrode, and a cap provided on the substrate to cover the movable structure, configured to be in contact with the film, and functioning as a driving electrode.
Abstract:
A switch includes a first electrode provided on a substrate, an anchor provided on the substrate, a movable structure which is supported by the anchor, provided above the first electrode to be extended from the anchor in a direction, formed of a conductor, and moves downwards, and a contact member which is attached to an edge of the movable structure, formed of a conductor, and warps toward the first electrode.
Abstract:
A semiconductor integrated circuit comprises an electrostatic actuator, an estimation circuit, a storage circuit and a bias circuit. The electrostatic actuator has a top electrode, a bottom electrode, and an insulating film disposed between the top electrode and the bottom electrode. The estimation circuit estimates the amount of a charge accumulated in the insulating film of the electrostatic actuator. The storage circuit stores a result of the estimation of the charge amount by the estimation circuit. The bias circuit changes, on the basis of the estimation result stored in the storage circuit, a drive voltage to drive the electrostatic actuator.
Abstract:
An actuator of the present invention includes a moving part, and a driving electrode which is comprised of electrode parts electrically isolated from each other and drives the moving part. A drive voltage is applied selectively to some of the electrode parts to control an electrostatic force which acts on the moving part.
Abstract:
An electrostatic actuator includes first and second lower electrodes formed apart from each other above a substrate, an electrode portion formed above the first and second lower electrodes and first and second upper electrodes, a distance between the first upper electrode and the first lower electrode at a first portion being greater than that at a second portion, a distance between the second upper electrode and the second lower electrode at a third portion being greater than that at a fourth portion, a first boundary portion between the first and third upper electrodes having a convex shape, a second boundary portion between the second and third upper electrodes having a convex shape, and the electrode portion driving the third upper electrode, and first and second layers formed in the first and second boundary portions.