Abstract:
A progressive stopper for a pressure sensing element is able to redistribute and reduce the stress of a diaphragm exposed to high pressure via multi-step contacts, such as at least dual contacts, where the diaphragm (designed for detecting pressure within a defined pressure range) is enabled to withstand much higher pressures above of the defined pressure range, such that the progressive stopper prevents catastrophic failure of the diaphragm. The progressive stopper is created to redistribute and reduce stress on the diaphragm significantly and effectively. The progressive stopper does not limit the output of the pressure sensing element such that the pressure sensing element is able to maintain the output voltage above the maximum output voltage of the defined pressure range when the diaphragm is exposed to high pressures with reduced stresses and strains.
Abstract:
A shaped body, in particular for a pressure sensor, can have a membrane and having a supporting section supporting the membrane. The membrane can be produced at least in layers from a ceramic material by means of additive manufacturing, in particular 3D screen printing, and having an outer circumferential shape with at least one corner.
Abstract:
Pressure sensors having ring-tensioned membranes are disclosed. A tensioning ring is bonded to a membrane in a manner that results in the tensioning ring applying a tensile force to the membrane, flattening the membrane and reducing or eliminating defects that may have occurred during production. The membrane is bonded to the sensor housing at a point outside the tensioning ring, preventing the process of bonding the membrane to the housing from introducing defects into the tensioned portion of the membrane. A dielectric may be introduced into the gap between the membrane and the counter electrode in a capacitive pressure sensor, resulting in an improved dynamic range.
Abstract:
A pressure measuring cell includes an elastic measuring membrane which is contactable with a first pressure on a first side and with a second pressure on a second side facing away from the first side. The measuring membrane is deflectable as a function of a difference between the first pressure and the second pressure, wherein the measuring membrane pressure-tightly isolates a first volume, which is facing the first side of the measuring membrane, from a second volume, which is facing the second side of the measuring membrane. The pressure measuring cell further includes a transducer for transducing the pressure dependent deflection of the measuring membrane into an electrical or optical signal. The measuring membrane has in the equilibrium state of the measuring membrane compressive stresses at least at the surface of the measuring membrane at least in a radial edge region, in which in the deflected state of the measuring membrane under pressure loading tensile stress maxima occur.
Abstract:
Pressure sensors and their methods of manufacturing, where the pressure sensors have a small, thin form factor and may include features designed to improve manufacturability and where the method of manufacturing may improve yield and reduce overall costs.
Abstract:
A pressure sensor device with a MEMS piezoresistive pressure sensing element attached to an in-circuit ceramic board comprises a monolithic ceramic circuit board formed by firing multiple layers of ceramic together. The bottom side of the circuit board has a cavity, which extends through layers of material from the ceramic circuit board is formed. A ceramic diaphragm, which is one of the layers, has a peripheral edge. The diaphragm's thickness enables the diaphragm bounded by the edge to deflect responsive to applied pressure. A MEMS piezoresistive pressure sensing element attached to the top side of the ceramic circuit board generates an output signal responsive to deflection of the ceramic diaphragm. A conduit carrying a pressurized fluid (liquid or gas) can be attached directly to the ceramic circuit board using a seal on the bottom of the ceramic circuit board, which surrounds the opening of the cavity through the bottom.
Abstract:
In a pressure sensor having a configuration in which strain gauges are provided on a diaphragm, a change in sensor characteristic caused by a positional shift of the strain gauges is suppressed, and a change in sensor output in response to a change in temperature is suppressed. The pressure sensor is a pressure sensor obtained by arranging, on a diaphragm having a long side and a short side, a sensor chip in which four strain gauges having the same characteristic and constituting a bridge circuit are provided, the pressure sensor being for detecting, in the bridge circuit, voltage output that is in proportion to a pressure applied to the diaphragm, and the pressure sensor is configured as follows: the four strain gauges are arranged to be adjacent to one another in the vicinity of the center of the diaphragm so that two strain gauges are arranged along the short side and the other two strain gauges are arranged along the long side; and the diaphragm has a thin portion in a long-side direction seen from the sensor chip.
Abstract:
A method includes forming a mask that defines a masked area and an unmasked area on a front side of a substrate, and implanting a buried layer corresponding to the unmasked area on the front side of the substrate. The method also includes forming an epitaxial layer having a back side on the front side of the substrate and on a front side of the buried layer, and creating an opening into a back side of the substrate up to a back side of the epitaxial layer and a back side of the one or portions of the buried layer.
Abstract:
The present invention relates to a method for preventing gases and fluids to penetrate a surface of an object, comprising the steps of: depositing (S1) an amorphous metal (5) on a surface of an object (4); forming (S2) a continuous layer of the amorphous metal (5) on the surface of the object (4); binding (S3) the amorphous metal (5) to the surface of the object by chemical binding; and passivation (S4) of a surface of the amorphous metal (5) facing away from the surface of the object (4).
Abstract:
A device/method for sensing a physical parameter, including a sensor die and a stress-sensitive circuit. The sensor die includes a semiconductor substrate and a cavity that creates an elastic element that bends in response to the physical parameter exerted on the sensor die. The elastic element includes at least at least one rigid island formed within the cavity, a thin area surrounding the at least one rigid island and having smaller thickness than the rigid island, and at least one stress concentrator at least partially formed in the thin area of the elastic element on the side of the substrate opposite the cavity. The stress-sensitive circuit includes at least one stress-sensitive component formed in the thin area of the elastic element. The at least one stress concentrator increases stress in the locations of the at least one stress-sensitive component resulting in an increase of the device sensitivity to the physical parameter.