摘要:
A film forming apparatus having a dry cleaning function comprises a process chamber for containing an object to be processed, a process gas supply system for introducing into the process chamber a process gas for forming one of a metal film or a metal compound film on the object, a heating device for depositing a component of the process gas on the object, thereby forming a film, a cleaning gas supply system for introducing into the process chamber a cleaning gas containing nitrogen trichloride or a fluoride such as chlorine trifluoride or nitrogen trifluoride for cleaning one of a metal or a metal compound adhering to an inner part of the process chamber due to the film formation, and an after-treatment gas supply system for introducing into the process chamber a cleaning after-treatment gas containing an alcohol.
摘要:
A processing apparatus has a placement stage that prevents generation of a crack due to heating of an embedded heater. The placement stage (32A) on which a wafer (W) is placed has a plurality of areas (32Aa, 32Ab) so that one of the plurality of heaters is embedded independently in each of the plurality of areas. The heater (35Aa) embedded in one area (32Aa) of adjacent areas has a part (35Aa2) extending in the other area (32Ab) of the adjacent areas, and the heater (35Ab) embedded in the other area (32Ab) of the adjacent areas has a part (35Ab2) extending in the one area (32Aa).
摘要:
A worktable device is disposed inside a film formation process container for a semiconductor process. The worktable device includes a worktable including a top surface to place a target substrate thereon, and a side surface extending downward from the top surface, and a heater disposed in the worktable and configured to heat the substrate through the top surface. A CVD pre-coat layer covers the top surface and the side surface of the worktable. The pre-coat layer has a thickness not less than a thickness which substantially saturates the amount of radiant heat originating from heating of the heater and radiated from the top surface and the side surface of the worktable.
摘要:
Disclosed is a method of forming a titanium nitride film on a substrate through the reaction of titanium tetrachloride and ammonia while minimizing corrosion of the underlying layer. A first titanium nitride layer is formed on a substrate by reacting titanium tetrachloride and ammonia with each other in the supply-limited region while minimizing corrosion of the underlying layer. Thereafter, a second titanium nitride layer is formed on the first titanium nitride layer in the reaction-limited region while achieving good step coverage.
摘要:
A processing apparatus has a placement stage that prevents generation of a crack due to heating of an embedded heater. The placement stage (32A) on which a wafer (W) is placed has a plurality of areas (32Aa, 32Ab) so that one of the plurality of heaters is embedded independently in each of the plurality of areas. The heater (35Aa) embedded in one area (32Aa) of adjacent areas has a part (35Aa2) extending in the other area (32Ab) of the adjacent areas, and the heater (35Ab) embedded in the other area (32Ab) of the adjacent areas has a part (35Ab2) extending in the one area (32Aa).
摘要:
The object of the present invention is to provide a plasma chemical vapor deposition method and apparatus capable of preventing local electric discharge at the peripheral portion of the susceptor. Prior to the film formation, a gas is supplied into an evacuated chamber, and a substrate is supported on substrate support pins, which is arranged in the susceptor and are in their elevated position, so that the substrate is preheated; thereafter the supply of the gas is stopped, the chamber is evacuated, and the substrate support pins are lowered so that the substrate is placed on the susceptor; and thereafter a gas is supplied into the chamber and the substrate is further preheated. Thereafter, plasma is generated in the chamber, and the film-forming gas is supplied into the chamber, to form a film on the substrate.
摘要:
Disclosed is a substrate processing method wherein the infrared absorptance or infrared transmittance of a substrate to be processed is measured in advance, and the substrate is processed according to the measured value while independently controlling temperatures at least in a first region located in the central part of the substrate and in a second region around the first region using temperature control means which are respectively provided for the first region and the second region and can be controlled independently from each other.
摘要:
A Ti film is formed by CVD in holes formed in an insulating film formed on a Si substrate or on a Si film formed on a Si substrate by a method according to the present invenitioin. The method includes the steps of: loading a Si substrate into a film forming chamber; evacuating the chamber at a predetermined vacuum; supplying TiCl4 gas, H2 gas, Ar gas and SiH4 gas into the film forming chamber; and producing a plasma in the film forming chamber to deposit a Ti film in the holes formed in the insulating film. The Si substrate is heated at 500° C. or below during the deposition of the Ti film. The flow rate of the SiH4 gas is from 30 to 70% of the flow rate of the TiCl4 gas. This method enables formation of a Ti film on a Si base at positions of holes in an insulating layer, with a good morphology of the interface between the Si base and the Ti film and with a good step coverage.
摘要:
A Ti film is formed on a surface of a wafer W placed inside a chamber 31, while injecting a process gas containing TiCl4 gas into the chamber 31 from a showerhead 40 made of an Ni-containing material at least at a surface. The method includes performing formation of a Ti film on a predetermined number of wafers W while setting the showerhead 40 at a temperature of 300° C. or more and less than 450° C., and setting TiCl4 gas at a flow rate of 1 to 12 mL/min (sccm) or setting TiCl4 gas at a partial pressure of 0.1 to 2.5 Pa, and then, performing cleaning inside the chamber 31, while setting the showerhead 40 at a temperature of 200 to 300° C., and supplying ClF3 gas into the chamber 31.
摘要:
Disclosed is a substrate processing method wherein the infrared absorptance or infrared transmittance of a substrate to be processed is measured in advance, and the substrate is processed according to the measured value while independently controlling temperatures at least in a first region located in the central part of the substrate and in a second region around the first region using temperature control means which are respectively provided for the first region and the second region and can be controlled independently from each other.