摘要:
A planar light emitting element is capable of outputting light having high directivity in at least one direction. The planar light emitting element has a light guide plate and first and second low refractive index layers. Light incident on the light guide plate is totally reflected on the interface between the light guide plate and the second low refractive index layer, propagates in the light guide plate, and is output from the light guide plate to the first low refractive index layer through a light output opening section. When a refractive index of the first low refractive index layer is sufficiently smaller than a refractive index of the light guide plate, the light propagates in the light guide plate at a large angle with respect to a light output surface of the light guide plate. When the difference between the refractive indexes of the first and second low refractive index layers is small, a spreading angle of light output to the first low refractive index layer is small. The light having high directivity is reflected on a reflective mirror and output from the planar light emitting element.
摘要:
A planar light emitting element is capable of outputting light having high directivity in at least one direction. The planar light emitting element has a light guide plate and first and second low refractive index layers. Light incident on the light guide plate is totally reflected on the interface between the light guide plate and the second low refractive index layer, propagates in the light guide plate, and is output from the light guide plate to the first low refractive index layer through a light output opening section. When a refractive index of the first low refractive index layer is sufficiently smaller than a refractive index of the light guide plate, the light propagates in the light guide plate at a large angle with respect to a light output surface of the light guide plate. When the difference between the refractive indexes of the first and second low refractive index layers is small, a spreading angle of light output to the first low refractive index layer is small. The light having high directivity is reflected on a reflective mirror and output from the planar light emitting element.
摘要:
In a liquid crystal display device, rays of light of a light source for blue light emission are concentrated on a fluorescent material by using a lens of a first micro-lens array and fluorescent rays from the fluorescent material are concentrated on a pixel of corresponding color by using a lens of a second micro-lens array.
摘要:
An object of the present invention is to provide a simply configured liquid crystal display device capable of providing a high front luminance when light obliquely enters a micro lens array. The liquid crystal display device comprises: a pair of polarizing plates which sandwich a pair of substrates; a liquid crystal layer sandwiched by the pair of substrates; transmission openings formed in a pixel to limit the quantity of light which penetrates the liquid crystal layer; condensing elements formed on the side of one of the substrates, opposite to the side on which the liquid crystal layer is disposed, to condense light to the transmission openings; and a planar light-emitting element which emits light to be applied to the condensing elements; wherein the light to be emitted from the planar light-emitting element forms a certain angle with respect to its perpendicular when emitted; and wherein the position of the transmission opening is relatively shifted with respect to that of the condensing element so as to increase the quantity of light which penetrates the transmission opening, in association with the light-emitting direction of the planar light-emitting element.
摘要:
An object of the present invention is to provide a simply configured liquid crystal display device capable of providing a high front luminance when light obliquely enters a micro lens array. The liquid crystal display device comprises: a pair of polarizing plates which sandwich a pair of substrates; a liquid crystal layer sandwiched by the pair of substrates; transmission openings formed in a pixel to limit the quantity of light which penetrates the liquid crystal layer; condensing elements formed on the side of one of the substrates, opposite to the side on which the liquid crystal layer is disposed, to condense light to the transmission openings; and a planar light-emitting element which emits light to be applied to the condensing elements; wherein the light to be emitted from the planar light-emitting element forms a certain angle with respect to its perpendicular when emitted; and wherein the position of the transmission opening is relatively shifted with respect to that of the condensing element so as to increase the quantity of light which penetrates the transmission opening, in association with the light-emitting direction of the planar light-emitting element.
摘要:
In a liquid crystal display device, rays of light of a light source for blue light emission are concentrated on a fluorescent material by using a lens of a first micro-lens array and fluorescent rays from the fluorescent material are concentrated on a pixel of corresponding color by using a lens of a second micro-lens array.
摘要:
A reference voltage line is synchronously scanned with scanning of a scanning signal line, voltage of the reference voltage line is set to be the voltage of a common electrode, the second transistor is set to be OFF state during the reference voltage line is set in the common voltage for a pixel wherein a node between an image signal memory and said second transistor is set in a voltage so that said second transistor becomes OFF and the voltage of image signal line is set to be high voltage level when the voltage of the scanning signal line changes from low voltage level to high voltage level for the pixel wherein the node between the image signal memory and the second transistor is set in a voltage so that said second transistor becomes ON.
摘要:
In order to provide a display device capable of improving the display quality at the time of 2D display and 3D display, the present invention provides a display device that includes: a display panel that displays an image; and a liquid, crystal lens panel that is arranged on the display surface side of the display panel, controls a refractive index in a cylindrical lens manner to form parallax barriers, and switches 2D display and 3D display, and the liquid crystal lens panel includes: a first transparent substrate that is arranged on the display panel side; a second transparent substrate that is arranged to face the first substrate through a liquid crystal layer; and a first polarizing plate that is formed on the display surface side of the second transparent substrate to control a polarization direction of light transmitting through the liquid crystal lens panel.
摘要:
The present invention provides an electrophoretic display in which an insulating liquid is uniformly provided to the divided microspaces each corresponding to one pixel and display characteristics uniform over the display surface are actualized. The present invention includes a transparent first substrate 1 and a transparent second substrate 2 arranged with a predetermined gap therebetween, charged particles 6 dispersed in an insulating liquid 5 provided to the gap, and a first electrode 3 and a second electrode 4 arranged on either of the first substrate 1 and the second substrate 2, wherein liquid-repellency parts 8 and repellency-lowered parts 9 are arranged on the surface of the first substrate 1 and the surface of the second substrate 2, and the insulating liquid 5 is provided to the repellency-lowered parts on the surface of the first substrate 1 and the surface of the second substrate 2.
摘要:
An optical element is arranged in such a manner that a screen thereof can be hardly observed from a predetermined direction, and a deterioration of an image quality caused by moire does not occur. The optical element is constituted by a first polarizing layer, a second polarizing layer, and a liquid crystal layer arranged between these two polarizing layers. In the optical element, absorption axes of the first polarizing layer and the second polarizing layer are located parallel to each other; the liquid crystal layer is made of hybrid-aligned discotic liquid crystal; and an alignment axis of the liquid crystal layer is located parallel to, or perpendicular to both absorption axes of the first polarizing layer and of the second polarizing layer.