摘要:
The present invention is directed toward a catalyst composition comprising a catalyst prepared by a process comprising: (a) impregnating an oxide precursor selected from the group consisting of rare earth oxide precursors, yttria precursors and mixtures thereof, onto an inorganic refractory oxide support; (b) drying said support at a temperature of about 100.degree. to about 120.degree. C. followed by calcining said support at a temperature of about 400.degree. to about 600.degree. C.; and (c) compositing or depositing on said support of step (b), a catalyst precursor salt represented by (ML)(Mo.sub.y W.sub.1-y O.sub.4).sub.a wherein M comprises Cr and/or one or more divalent promoter metals selected from the group consisting of Mn, Fe, Co, Ni, Cu, Zn and mixtures thereof, wherein y is any value ranging from 0 to 1, and wherein L is one or more neutral, nitrogen-containing ligands at least one of which is a chelating polydentate ligand; a=1 when chromium is not one of the promoter metals and 0.5.ltoreq.a.ltoreq.3 when Cr is one of the promoter metals. (d) sulfiding said deposited or composited supports of step (c) with an excess amount of sulfur in the form of one or more sulfur bearing compounds and at a temperature of at least about 250.degree. C. to form catalysts. In a preferred embodiment, the process will further comprise decomposing the composited or deposited supports of step (c) in a nonoxidizing atmosphere at a temperature of at least about 250.degree. C. prior to said sulfiding step (d). In a second aspect of the invention there is provided an improved aromatics hydrogenation process.
摘要:
The present invention is directed toward a catalyst composition prepared by a process comprising: (a) impregnating an oxide precursor selected from the group consisting of rare earth oxide precursors, yttria precursors and mixtures thereof, onto an inorganic refractory oxide support; (b) drying said support at a temperature of about 100.degree. to about 120.degree. C. followed by calcining said support at a temperature of about 400.degree. to about 600.degree. C.; and (c) compositing or depositing on said support of step (b), a catalyst precursor salt represented by (ML)(Mo.sub.y W.sub.1-y O.sub.4).sub.a wherein M comprises Cr and/or one or more divalent promoter metals selected from the group consisting of Mn, Fe, Co, Ni, Cu, Zn and mixtures thereof, wherein y is any value ranging from 0 to 1, and wherein L is one or more neutral, nitrogen-containing ligands at least one of which is a chelating polydentate ligand; a=1 when chromium is not one of the promoter metals and 0.5.ltoreq.a.ltoreq.3 when Cr is one of the promoter metals. (d) sulfiding said deposited or composited support of step (c) with an excess amount of sulfur in the form of one or more sulfur bearing compounds and at a temperature of at least about 250.degree. C. to form catalysts. In a preferred embodiment, the the composited or deposited supports of step (c) may be decomposed in a nonoxidizing atmosphere at a temperature of at least about 250.degree. C. prior to said sulfiding step (d). In a second aspect of the invention there is provided an improved aromatics hydrogenation process.
摘要:
The present invention is directed toward a catalyst composition comprising a catalyst prepared by a process comprising: (a) impregnating an oxide precursor selected from the group consisting of rare earth oxide precursors, yttria precursors and mixtures thereof, onto an inorganic refractory oxide support; (b) drying said support at a temperature of about 100.degree. to about 120.degree. C. followed by calcining said support at a temperature of about 400.degree. to about 600.degree. C.; and (c) compositing or depositing on said support of step (b), a catalyst precursor salt represented by (ML)(Mo.sub.y W.sub.1-y O.sub.4).sub.a wherein M comprises Cr and/or one or more divalent promoter metals selected from the group consisting of Mn, Fe, Co, Ni, Cu, Zn and mixtures thereof, wherein y is any value ranging from 0 to 1, and wherein L is one or more neutral, nitrogen-containing ligands at least one of which is a chelating polydentate ligand; a=1 when chromium is not one of the promoter metals and 0.5.ltoreq.a.ltoreq.3 when Cr is one of the promoter metals. (d) sulfiding said deposited or composited supports of step (c) with an excess amount of sulfur in the form of one or more sulfur bearing compounds and at a temperature of at least about 250.degree. C. to form catalysts. In a preferred embodiment, the process will further comprise decomposing the composited or deposited supports of step (c) in a nonoxidizing atmosphere at a temperature of at least about 250.degree. C. prior to said sulfiding step (d). In a second aspect of the invention there is provided an improved aromatics hydrogenation process.
摘要:
A process for hydroprocessing petroleum and chemical feedstocks by use of a bulk multimetallic catalyst comprised of at least one Group VIII non-noble metal and at least one, preferably two Group VIB metal wherein the ratio of Group VIB metal to Group VIII metal is from about 10:1 to 1:10.
摘要:
The present invention is directed toward a hydrogenation process using a highly active aromatics hydrogenation catalyst. The catalyst is prepared by decomposing a catalyst precursor selected from the group consisting of metal amine molybdates, metal amine tungstates and mixtures thereof, wherein said metal amine catalyst precursor has the general formula ML (Mo.sub.y W.sub.1-y O.sub.4).sub.a where M is Cr and/or one or more divalent promoter metals selected from the group consisting of Mn, Fe, Co, Ni, Cu and Zn; L is one or more neutral nitrogen-containing ligands at least one of which is a chelating polydentate ligand; 0.ltoreq.y.ltoreq.1; and a=1 for non-chromium containing catalysts and wherein 0.5.ltoreq.a.ltoreq.3 for chromium containing catalysts, at a temperature of about 200.degree. C. to about 400.degree. C. in an inert atmosphere; then reducing at a temperature of about 300.degree. C. to about 450.degree. C. said metal amine catalyst precursor to form a mixed metal oxide catalyst of the formula ML(Mo.sub.y W.sub.1-y O.sub.b).sub.a where M, L and y are as above and b
摘要:
The present invention is directed toward a highly active aromatics hydrogenation catalyst and its use. The catalyst composition is prepared by: (a) decomposing a catalyst precursor selected from the group consisting of metal amine molybdates, metal amine tungstates and mixtures thereof, wherein said metal amine catalyst precursor has the general formula ML(Mo.sub.y W.sub.1-y O.sub.4)a where M is Cr and/or one or more divalent promoter metals selected from the group consisting of Mn, Fe, Co, Ni, Cu and Zn; L is one or more neutral nitrogen containing ligands at least one of which is a chelating polydentate ligand; 0.ltoreq.y.ltoreq.1; and a=1 for non-chromium containing catalysts and wherein 0.5.ltoreq.a.ltoreq.3 for chromium containing catalysts, at a temperature of about 200.degree. to about 400.degree. C. in an inert atmosphere; and (b) reducing at a temperature of about 300.degree. to about 450.degree. C. said metal amine catalyst precursor to form a catalyst. The catalyst as prepared above may be used in an aromatics hydrogenation process. The invention is further directed to the use of such catalysts in aromatics hydrogenation processes.
摘要:
The instant invention is directed to a process for removing hard sulfurs from hydrocarbon streams by selectively oxidizing hard sulfurs in a hydrotreated stream, under oxidizing conditions in the presence of an effective amount of an oxidizing agent, wherein the oxidizing agent is a peroxometal complex and wherein the hard sulfurs are oxidized into the corresponding sulfoxides and sulfones.
摘要:
The present invention relates to an apparatus and a process for the high-throughput, quick screening, optimization, regeneration, reduction and activation of catalysts. More specifically, the present invention is a method and apparatus to quickly screen, optimize and regenerate multiple fast deactivating catalysts while maintaining a predefined range of time-on-stream.
摘要:
The present invention is directed to a Fluid Catalytic Cracking process conducted under fluid catalytic cracking conditions by injecting into at least one reaction zone of a fluid catalytic cracking unit (FCCU) having one or more risers, a plurality of feeds wherein said plurality of feeds comprises at least one feed (.alpha.) and at least another feed (.beta.) wherein said feeds (.alpha.) and (.beta.) (a) differ in Conradson Carbon Residue by at least about 2 wt % points; or (b) differ in hydrogen content by at least about 0.2 wt %; or (c) differ in API gravities by at least about 2 points; or (d) differ in nitrogen content by at least about 50 ppm; or (e) differ in carbon-to-hydrogen ratio by at least about 0.3; or (f) differ in mean boiling point by at least about 200.degree. F; and wherein said feeds (.alpha.) and (.beta.) are alternately injected and wherein said alternate injection maintains said risers in a cyclic steady state, while the rest of the FCC unit is in a steady state.
摘要:
The invention relates to Fluid Catalytic Cracking (FCC) for producing liquid fuels and light olefins from liquid hydrocarbon mixtures such as petroleum fractions.