摘要:
A transceiver (5) for an asymmetric communication system such as asymmetric digital subscriber line (ADSL) includes a configuration register (71) defining operation at either a central office (CO) or a remote terminal (RT). The configuration register (71) includes a control bit (72) for selecting either CO or RT mode. The transceiver (5) includes a signal processing module (70) configured according to the state of the control bit (72). For example, a digital interface (70) converts transmit data into transmit symbols and converts received symbols into receive data. The digital interface (70) uses a large memory (158) as a buffer in the transmit path and a small memory (160) as a buffer in the receive path in CO mode. In RT mode, the digital interface (70) uses the small memory (160) in the transmit path and the large memory (158) in the receive path. The selective configuration allows a single integrated circuit to be used in both CO and RT equipment.
摘要:
An ADSL receiver (200) receives an upstream modified ADSL signal and an ISDN signal from a remote terminal (32) on a twisted-pair copper wire (18). An ADSL transmitter (100) of the remote terminal (32) transmits the ADSL signal in a frequency range above an ISDN frequency range so that the ADSL signal does not overlap the frequency range of the ISDN signal. In one embodiment, the ADSL receiver (200) includes a band pass filter (201), an analog-to-digital converter (203), a decimator (205), a fast Fourier transform (210), and a digital signal processor (212). The decimator (205) converts the ADSL signal back to base band, thus allowing an ADSL signal source to simultaneously utilize the telephone line with an ISDN signal source, without significantly reducing ADSL throughput.
摘要:
A flexible asymmetrical digital subscriber line (ADSL) transmitter is able to operate simultaneously with integrated services digital network (ISDN) terminal equipment (TE) using a common telephone line (18). The ADSL transmitter changes the frequency content of a frequency-encoded ADSL signal (104) so that its frequency content does not overlap the frequency content of the ISDN TE signal. A corresponding ADSL receiver located within a central office (CO) adapts to the changed frequency content, allowing the ADSL signal to be transmitted over the telephone line without substantial loss of signal integrity. In one embodiment, an ADSL transmitter (100) converts ADSL symbols making up the frequency-encoded ADSL signal (104) into a corresponding time domain signal. The transmitter (100) then interpolates the time domain signal and high pass filters the interpolated signal. This high pass filtered signal is then converted to analog form, bandpass filtered, and driven onto the telephone line (18).
摘要:
In the present invention, an ADSL system (10) identifies good bin as a bin capable of successfully transmitting data to a destination. A bad bin is identified as a carrier that is not capable of successfully transmitting data to the destination. A marginal bin is identified as a carrier that may be capable of transmitting data to the destination. The power to a bad bin is reduced and allocated to the marginal or good bin(s) to allow an increased bit rate. In another embodiment, the power to marginal bin is reduced and allocated to the good bin(s).
摘要:
In the present invention, carriers associated with a discrete multi-tone (DMT) communications system (10) are sorted according to bit allocation capacity. The number of bits needed to attain a specified bit rate are then allocated beginning with the carrier having the greatest bit allocation capacity and proceeding toward the carrier having the least bit allocation capacity until all bits to are allocated. Once allocated, the power to any unused bins is reduced. Different subsets of the carriers between line cards can be specified in order to reduce crosstalk between adjacent lines.
摘要:
A symbol generator (804) generates a time-domain discrete multi-tone symbol (810). A magnitude comparator (812) compares the magnitude of the time-domain discrete multi-tone symbol (810) with a magnitude threshold. When the magnitude of the time-domain discrete multi-tone symbol (810) compares unfavorably to the magnitude threshold, a magnitude adjusting symbol (816) is added to the time-domain discrete multi-tone symbol (810) such that the magnitude of the time-domain discrete multi-tone symbol (810) is reduced, thereby reducing the peak-to-average requirements (PAR).
摘要:
A system is provided for transmitting data to a plurality of devices. A data source receives data from a video broadcasting source, such as a digital television provides, through a data cable. The data source identifies devices to receive particular sets of data, such as particular programs, from the data cable. The data source identifies particular settings for transmitting to particular devices. The data source adjusts a transmission power to a first device to efficiently provide data reliably to the first device. The data source can assign more or less power for transmitting data to the first device. The data source provides data to the source device using a first data channel. The data source provides data to a second device using a second data channel. The data source receives acknowledgements and control information from the first device and the second device using the second data channel.
摘要:
A method and apparatus for synchronized channel transmission are disclosed. One embodiment of the method comprises: generating a first data stream and a second data stream; packetizing the first data stream to produce a first plurality of data packets; packetizing the second data stream to produce a second plurality of data packets; baseband processing the first plurality of data packets to produce a first plurality of symbols for each of the first plurality of data packets; baseband processing the second plurality of data packets to produce a second plurality of symbols for each of the second plurality of data packets; converting the first plurality of symbols into a first radio frequency signal; converting the second plurality of symbols into a second radio frequency signal; and synchronizing at least one of: generating the first and the second data streams, packetizing the first and second data streams, baseband processing the first and second plurality of data packets, and converting the first and second plurality of symbols.
摘要:
A cascaded integrator-comb (CIC) interpolation filter is included within a digital-to-analog converter (138) and includes two up-samplers (150, 164). The two up-samplers (150, 164) also include a sample-and-hold function. The first up-sampler (150) up-samples an output of a differentiator (140). The second up-sampler (164) up-samples an output of an integrator (152) This reduces the area and power requirements of the CIC interpolation filter, while providing approximately the same filtering performance in the pass band and transition band. The total over-sample ratio of the CIC interpolation filter is equal to the first up-sampling ratio multiplied by the second up-sampling ratio. The stop band requirements of the CIC interpolation filter determines the relative sizes of the first and second up-sampling ratios.
摘要:
A data stream to be transmitted is received by a digital interface (52) and converted into a frequency encoded data. A gains block (54) receives the frequency encoded data and a gain adjustment signal, and produces a gain adjusted data to compensate for undesirable system level passband gain variation. The gain adjusted data is converted to a time domain data. The time domain data is processed by a high-pass and a droop correction filter (58, 59) to produce a filtered data. The filtered data is provided through an analog front-end (60) in order to provide a filtered analog data.