摘要:
In semiconductor integrated circuit and device fabrication interconnect metallization is accomplished by a clad Ag deposited on a SiO2 level on a Si surface. The clad Ag has a layer of an alloy of Ag and Al (5 atomic %) contacting the SiO2, a layer of substantially pure Ag and an outer layer of the Ag and Al alloy. The alloy improves adhesion to the SiO2, avoids agglomeration of the Ag, reduces or eliminates diffusion at the SiO2 surface, reduces electromigration and presents a passive exterior surface.
摘要:
In semiconductor integrated circuit and device fabrication interconnect metallization is accomplished by a clad Ag deposited on a SiO2 level on a Si surface. The clad Ag has a layer of an alloy of Ag and Al (5 atomic %) contacting the SiO2, a layer of substantially pure Ag and an outer layer of the Ag and Al alloy. The alloy improves adhesion to the SiO2, avoids agglomeration of the Ag, reduces or eliminates diffusion at the SiO2 surface, reduces electromigration and presents a passive exterior surface.
摘要:
In semiconductor integrated circuit and device fabrication interconnect metallization is accomplished by a clad Ag deposited on a SiO2 level on a Si surface. The clad Ag has a layer of an alloy of Ag and Al (5 atomic %) contacting the SiO2, a layer of substantially pure Ag and an outer layer of the Ag and Al alloy. The alloy improves adhesion to the SiO2, avoids agglomeration of the Ag, reduces or eliminates diffusion at the SiO2 surface, reduces electromigration and presents a passive exterior surface.
摘要:
Some embodiments include an apparatus for testing flexible displays. The apparatus can include: (a) a first clamp configured to receive a first end of the flexible display; (b) a second clamp configured to receive a second end of the flexible display, wherein the second end of the flexible display is opposite the first end of the flexible display; and (c) a test column. Other embodiments and methods are disclosed herein.
摘要:
Systems and methods for microwave annealing are disclosed. In some embodiments, the system may comprise a microwave emitter configured to emit a microwave at a single frequency during an anneal time. In some embodiments, the system may further comprise an anneal unit to be annealed, the anneal unit having a top side, a bottom side, and one or more edge sides. In some embodiments, the system may further comprise a susceptor configured to absorb microwave energy, where the susceptor is adjacent to the edge side and at the bottom side of the anneal unit.
摘要:
An electronic apparatus uses a single crystalline silicon substrate disposed adjacent to a flexible substrate. The electronic apparatus may be a flexible flat panel display, or a flexible printed circuit board. The flexible substrate can be made from polymer, plastic, paper, flexible glass, and stainless steel. The flexible substrate is bonded to the single crystalline substrate using an ion implantation process. The ion implantation process involves the use of a noble gas such as hydrogen, helium, xenon, and krypton. A plurality of semiconductor devices are formed on the single crystalline silicon substrate. The semiconductor devices may be thin film transistors for the flat panel display, or active and passive components for the electronic device.
摘要:
Some embodiments include an apparatus for testing flexible displays. The apparatus can include: (a) a first clamp configured to receive a first end of the flexible display; (b) a second clamp configured to receive a second end of the flexible display, wherein the second end of the flexible display is opposite the first end of the flexible display; and (c) a test column. Other embodiments and methods are disclosed herein.
摘要:
A method of ion cleaving using microwave radiation is described. The method includes using microwave radiation to induce exfoliation of a semiconductor layer from a donor substrate. The donor substrate may be implanted, bonded to a carrier substrate, and heated via the microwave radiation. The implanted portion of the donor substrate may include increased damage and/or dipoles (relative to non-implanted portions of the donor substrate), which more readily absorb microwave radiation. Consequently, by using microwave radiation, an exfoliation time may be reduced to 12 seconds or less. In addition, a presented method also includes the use of focused ion beam implantation to achieve a pattern-less transfer of a semiconductor layer onto a carrier substrate.