摘要:
In general, an oil pump driving control device for a hybrid vehicle is described. A hybrid vehicle includes a drive-train configured and arranged to transmit power in the order of an engine, a first clutch, a motor generator, a second clutch and a drive wheel, and an oil pump operably configured and arranged at a location between the first clutch and the second clutch such that the oil pump is mechanically driven by at least one of the engine and the motor generator. The invention provides an oil pump driving control device that supplies the necessary oil pressure for an automatic transmission with only a single mechanical oil pump. For example, even when it is not possible to maintain tightening of the second clutch, oil pressure may be supplied by rotating the oil pump using the motor generator. In this way, the oil pressure may be supplied with a single oil pump.
摘要:
In general, an oil pump driving control device for a hybrid vehicle is described. A hybrid vehicle includes a drive-train configured and arranged to transmit power in the order of an engine, a first clutch, a motor generator, a second clutch and a drive wheel, and an oil pump operably configured and arranged at a location between the first clutch and the second clutch such that the oil pump is mechanically driven by at least one of the engine and the motor generator. The invention provides an oil pump driving control device that supplies the necessary oil pressure for an automatic transmission with only a single mechanical oil pump. For example, even when it is not possible to maintain tightening of the second clutch, oil pressure may be supplied by rotating the oil pump using the motor generator. In this way, the oil pressure may be supplied with a single oil pump.
摘要:
A hybrid vehicle drive control system is configured to perform engine startup when switching from an electric drive mode to a hybrid drive mode, without creating a sense of output torque loss. In particular, a controller selectively controls a first clutch disposed between the engine and the motor/generator and a second clutch disposed between the motor/generator and a drive wheel to switch between an electric drive mode in which the first clutch is released and the second clutch is engaged, and a hybrid drive mode in which both the first and second clutches are engaged. The controller sets the second torque transfer capacity to a value that is more than zero and less than the target motor/generator torque of the motor/generator when switching from the electric drive mode to the hybrid drive mode and when starting the engine.
摘要:
A hybrid vehicle drive control system is configured to perform engine startup when switching from an electric drive mode to a hybrid drive mode, without creating a sense of output torque loss. In particular, a controller selectively controls a first clutch disposed between the engine and the motor/generator and a second clutch disposed between the motor/generator and a drive wheel to switch between an electric drive mode in which the first clutch is released and the second clutch is engaged, and a hybrid drive mode in which both the first and second clutches are engaged. The controller sets the second torque transfer capacity to a value that is more than zero and less than the target motor/generator torque of the motor/generator when switching from the electric drive mode to the hybrid drive mode and when starting the engine.
摘要:
A drive train for a hybrid electric vehicle has an engine, first and second motor/generators, a third motor, and a transmission in connecting relationships with the engine, the motor/generators, and the third motor. The transmission has planetary gear sets to be shifted among a plurality of running modes including a large driving force running mode. A controller controls surplus power caused by power balance between the first and second motor/generators to be supplied to the third motor when the surplus power is generated and the vehicle starts with the transmission being operated in the large driving force running mode.
摘要:
In a vehicle which has an automatic stop/restart device of the engine 1, the engine 1 is started rapidly only in cases where a quick start of the engine 1 is required such as when the vehicle is stationary on a rising slope, or cuts across the opposite lane for a left turn. For this purpose, excitation of an motor 2 is performed before startup of the motor 2 for restarting the engine 1 quickly. When automatic stop conditions are satisfied, the engine 1 stops, and when restart conditions are satisfied, the motor 2 is started to restart the engine 1. When the vehicle is on a rising slope and it is required to start the vehicle quickly, the motor 2 is energized first before the motor 2 is started. Also, when it is determined that the vehicle must start rapidly such as when the vehicle is trying to cut across the opposite lane for a left turn, the motor 2 is excited before it starts. In this way, when it is desired to start, the vehicle quickly, a rapid restart of the engine 1 and therefore rapid start of the vehicle is possible.
摘要:
In an on-vehicle hybrid drive apparatus including a power-transmission shaft transmitting rotation generated from an engine into a transmission, and a motor-and-generator fitted on the power-transmission shaft and installed between the engine and the transmission, a first friction element is installed on the engine side for coupling the engine with or uncoupling it from the motor-and-generator. A second friction element is installed on the transmission side for coupling the motor-and-generator with or uncoupling it from a transmission output shaft. A rotating damper is installed after the motor-and-generator and disposed in a rotating-motion transmission system ranging from the motor-and-generator to the transmission output shaft. The rotating damper is interleaved in a coaxially abutted shaft portion of a central motor-and-generator shaft and a transmission input shaft.
摘要:
A vehicle with an automatic engine stop/restart function comprises an engine, an automatic transmission having an oil pump driven in synchronism with the engine to supply an oil pressure to the automatic transmission, an oil pressure controller to hold the oil pressure in the automatic transmission during an automatic stop of the engine, and a control system. The control system is configured to: determine whether the oil pressure in the automatic transmission becomes lower than a predetermined value during the engine automatic stop; shift the automatic transmission into a neutral state when the oil pressure in the automatic transmission becomes lower than a predetermined value during the engine automatic stop; restarts the engine; and then, shift the automatic transmission into a drive state after the oil pressure in the automatic transmission is increased to the predetermined value by the oil pump driven in synchronism with the engine.
摘要:
A drive train for a hybrid electric vehicle has an engine, first and second motor/generators, a third motor, and a transmission in connecting relationships with the engine, the motor/generators, and the third motor. The transmission has planetary gear sets to be shifted among a plurality of running modes including a large driving force running mode. A controller controls surplus power caused by power balance between the first and second motor/generators to be supplied to the third motor when the surplus power is generated and the vehicle starts with the transmission being operated in the large driving force running mode.
摘要:
An engine (1) of a vehicle comprises an identification device (11) which verifies the identification code of an electronic key (12) using a wireless signal. The controller (5) executes an idle stop under predetermined stop conditions (S6, S7) and re-starts the engine (1) during the idle stop when any one of a plurality of restart conditions are satisfied. The restart conditions include a restart request from the driver of the vehicle (S6, S7). The controller (7) commands the identification device (11) to verify the identification code of the electronic key (12) when restart conditions are established which do not correspond to the restart request to the engine (1) of the driver during an idle stop. When the verification is unsuccessful, restarting of the engine (1) is prohibited and thus it is possible to prevent restarting the engine (1) when the driver is not present.