摘要:
An electrode catalyst for a fuel cell consists principally of a carbon support, and a platinum catalyst or a platinum-alloy catalyst supported on the carbon support. In the electrode catalyst, at least 0.7 mmol of an acid per gram of the electrode catalyst is present on the carbon support.
摘要:
An electrode catalyst for a fuel cell, which is capable of maintaining power generation capacity for long periods and has good durability, is provided. The electrode catalyst for a fuel cell is produced by causing a high crystalline carbon carrier with a carbon crystallization degree ranging from 57% to 90% to support a catalytic metal.
摘要:
A flooding phenomenon is suppressed in a high current density loading region so as to attempt the improvement of cell performance of fuel cells. An electrode catalyst for fuel cells, in which a catalyst comprising an alloy catalyst composed of a noble metal and one or more transition metals and having surface characteristics such that it shows a pH value in water of 6.0 or more is supported on conductive carriers, and a fuel cell using such electrode catalyst for fuel cells, are provided.
摘要:
A conductive carbon carrier for a fuel cell having at least a surface layer graphitized, characterized in that the dimension (La) in a six-membered ring face (carbon plane) direction of a crystallite measured by X-ray diffraction is 4.5 nm or more. This carbon carrier improves the durability in a fuel cell and enables operation for a long period of time.
摘要:
An object of the present invention is to reduce the amount of catalytic metal such as Pt in a fuel cell. The present invention provides a fuel cell electrode catalyst comprising a conductive carrier and catalytic metal particles, wherein the CO adsorption amount of the electrode catalyst is at least 30mL/g·Pt.
摘要:
A fuel cell catalyst in which catalyst particles are supported on a carrier is provided, wherein the value of the average catalyst carrier pore diameter/the catalyst metal (PGM) particle diameter is 0.5 to 1.8. Such fuel cell catalyst is less likely to cause voltage drops even after being used for a long period of time.
摘要:
An object of the present invention is to reduce the amount of catalytic metal such as Pt in a fuel cell. The present invention provides a fuel cell electrode catalyst comprising a conductive carrier and catalytic metal particles, wherein the CO adsorption amount of the electrode catalyst is at least 30 mL/g·Pt.
摘要:
This invention relates to an electrode catalyst for a fuel cell comprising catalyst metal particles of noble metal-base metal-Ce (cerium) ternary alloy carried on carbon materials, wherein the noble metal is at least one member selected from among Pt, Ru, Rh, Pd, Ag and Au, the base metal is at least one member selected from among Ir, Co, Fe, Ni and Mn, and the relative proportion (i.e., the molar proportion) of noble metal:base metal:Ce (cerium) is 20 to 95:5 to 60:0.1 to 3. The electrode catalyst for a fuel cell inhibits deterioration of an electrolyte membrane or an electrolyte in an electrode catalyst layer, improves durability, and, in particular, improves the capacity for power generation in the high current density region.
摘要:
A conductive carbon carrier for a fuel cell having at least a surface layer graphitized, characterized in that the dimension (La) in a six-membered ring face (carbon plane) direction of a crystallite measured by X-ray diffraction is 4.5 nm or more. This carbon carrier improves the durability in a fuel cell and enables operation for a long period of time.
摘要:
This invention relates to an electrode catalyst for a fuel cell comprising catalyst metal particles of noble metal-base metal-Ce (cerium) ternary alloy carried on carbon materials, wherein the noble metal is at least one member selected from among Pt, Ru, Rh, Pd, Ag and Au, the base metal is at least one member selected from among Ir, Co, Fe, Ni and Mn, and the relative proportion (i.e., the molar proportion) of noble metal:base metal:Ce (cerium) is 20 to 95:5 to 60:0.1 to 3. The electrode catalyst for a fuel cell inhibits deterioration of an electrolyte membrane or an electrolyte in an electrode catalyst layer, improves durability, and, in particular, improves the capacity for power generation in the high current density region.