摘要:
The power generation efficiency of a microbial power generator is increased by using an easy and inexpensive unit. Two plate-like cation-exchange membranes are disposed in parallel in a tank. This arrangement allows an anode chamber to be formed between the cation-exchange membranes. Two cathode chambers are separated from the anode chamber by using the respective ion-permeable nonconductive membranes. An oxygen-containing gas is made to pass through the cathode chamber. An anode solution is supplied to the anode chamber, and, preferably, the anode solution is made to circulate. A biologically treated exhaust gas is used as the oxygen-containing gas to be supplied to the cathode chamber. Carbon dioxide in the biologically treated exhaust gas can promote transport of Na+ and K+ ions, and water vapor can increase the ion permeability, thereby increasing the power generation efficiency.
摘要:
To increase the power generation efficiency of a microbial power generator by using an easy and inexpensive unit. Two plate-like cation-exchange membranes 31 are disposed in parallel in a tank 30. This arrangement allows an anode chamber 32 to be formed between the cation-exchange membranes 31. Two cathode chambers 33 are separated from the anode chamber 32 by using the respective ion-permeable nonconductive membranes 31. An oxygen-containing gas is made to pass through the cathode chamber 33. An anode solution L is supplied to the anode chamber, and, preferably, the anode solution is made to circulate. A biologically treated exhaust gas is used as the oxygen-containing gas to be supplied to the cathode chamber 33. Carbon dioxide in the biologically treated exhaust gas can promote transport of Na+ and K+ ions, and water vapor can increase the ion permeability, thereby increasing the power generation efficiency.
摘要:
Power generation efficiency of a microbial power generation device is improved by a simple and inexpensive means. Two plate-shaped cation-exchange membranes 31 are disposed parallel to each other in a tank body 30, whereby a negative electrode chamber 32 is formed between the cation-exchange membranes 31. Two positive electrode chambers 33 are each formed so as to be separated from the negative electrode chamber 32 by the corresponding cation-exchange membrane 31. An oxygen-containing gas is passed through the positive electrode chamber 33, a negative electrode solution L is supplied to the negative electrode chamber, and preferably the negative electrode solution is circulated. An acid gas (carbon dioxide gas) is introduced into the oxygen-containing gas to be supplied to the positive electrode chamber 33. Movement of Na+ and K+ ions is promoted by the pH neutralization effect produced by the acid gas, and thereby power generation efficiency can be improved.
摘要:
To increase the power generation efficiency of a microbial power generator by using an easy and inexpensive unit. Two plate-like cation-exchange membranes 31 are disposed in parallel in a tank 30. This arrangement allows an anode chamber 32 to be formed between the cation-exchange membranes 31. Two cathode chambers 33 are separated from the anode chamber 32 by using the respective ion-permeable nonconductive membranes 31. An oxygen-containing gas is made to pass through the cathode chamber 33. An anode solution L is supplied to the anode chamber, and, preferably, the anode solution is made to circulate. A biologically treated exhaust gas is used as the oxygen-containing gas to be supplied to the cathode chamber 33. Carbon dioxide in the biologically treated exhaust gas can promote transport of Na+ and K+ ions, and water vapor can increase the ion permeability, thereby increasing the power generation efficiency.
摘要:
A microbial power generation device includes an anode chamber which maintains a microbe and which is supplied with influent which includes an electron donor, a cathode chamber supplied with an electron acceptor, a nonconductive membrane having a first face and an opposing second face and arranged between the anode chamber and the cathode chamber, a first electro-conductive support material having a rough surface which has asperity spreading close to the first face of the nonconductive membrane, and formed by a porous material having approximately the same shape as the interior of the anode chamber, and arranged within the anode chamber, and a second electro-conductive support material having a rough surface which has asperity spreading close to the second face of the nonconductive membrane.
摘要:
Power generation efficiency of a microbial power generation device is improved by a simple and inexpensive means. Two plate-shaped cation-exchange membranes 31 are disposed parallel to each other in a tank body 30, whereby a negative electrode chamber 32 is formed between the cation-exchange membranes 31. Two positive electrode chambers 33 are each formed so as to be separated from the negative electrode chamber 32 by the corresponding cation-exchange membrane 31. An oxygen-containing gas is passed through the positive electrode chamber 33, a negative electrode solution L is supplied to the negative electrode chamber, and preferably the negative electrode solution is circulated. An acid gas (carbon dioxide gas) is introduced into the oxygen-containing gas to be supplied to the positive electrode chamber 33. Movement of Na+ and K+ ions is promoted by the pH neutralization effect produced by the acid gas, and thereby power generation efficiency can be improved.
摘要:
A microbial power generation device includes an anode chamber which maintains a microbe and which is supplied with influent which includes an electron donor, a cathode chamber supplied with an electron acceptor, a nonconductive membrane having a first face and an opposing second face and arranged between the anode chamber and the cathode chamber, a first electro-conductive support material having a rough surface which has asperity spreading close to the first face of the nonconductive membrane, and formed by a porous material having approximately the same shape as the interior of the anode chamber, and arranged within the anode chamber, and a second electro-conductive support material having a rough surface which has asperity spreading close to the second face of the nonconductive membrane.
摘要:
Raw water containing ammonium-nitrogen is introduced into a nitrification tank and nitrification of nitrite-nitrogen by nitrite oxidizing bacteria is inhibited according to inhibition of the ammonium-nitrogen, thereby conducting stable nitrification of nitrous acid type at a high load by the action of ammonium oxidizing bacteria. Carbonate and/or bicarbonate are added into the nitrification tank 1. The inorganic carbon concentration in the nitrification tank 1 is maintained at 35 mg-C/L or more. The nitrified liquid thus obtained is introduced into a denitrification tank and denitrification reaction is conducted by the action of denitrifying bacteria with the remaining ammonium-nitrogen as an electron donor and the nitrite-nitrogen as an electron acceptor.
摘要:
An agent for increasing the rejection with a permeable membrane which comprises an ionic macromolecule having a weight-average molecular weight of 100,000 or greater; a process for increasing the rejection with a permeable membrane which comprises treating a permeable membrane with the agent; a permeable membrane which is treated in accordance with the process; and a process for water treatment which comprises using the permeable membrane are disclosed. By using the above agent, an increased rejection of inorganic electrolytes and organic compounds soluble in water can be maintained for a long time easily and safely at the location of the use of the membrane without extreme decrease in the flux of permeation in the membrane separation using a selective permeable membrane such as a nano filtration membrane and a reverse osmosis membrane.
摘要:
Raw water is made acidic so that the pH is not more than 4.5 and heated in the presence of an oxidizing agent to decompose TOC components in the raw water, and then deionized, thereby producing ultrapure water having a greatly low concentration of organic matters.