摘要:
An object is to provide an SOI substrate provided with a semiconductor layer which can be used practically even when a glass substrate is used as a base substrate. Another object is to provide a semiconductor device having high reliability using such an SOI substrate. An altered layer is formed on at least one surface of a glass substrate used as a base substrate of an SOI substrate to form the SOI substrate. The altered layer is formed on at least the one surface of the glass substrate by cleaning the glass substrate with solution including hydrochloric acid, sulfuric acid or nitric acid. The altered layer has a higher proportion of silicon oxide in its composition and a lower density than the glass substrate.
摘要:
An object is to provide an SOI substrate provided with a semiconductor layer which can be used practically even when a glass substrate is used as a base substrate. Another object is to provide a semiconductor device having high reliability using such an SOI substrate. An altered layer is formed on at least one surface of a glass substrate used as a base substrate of an SOI substrate to form the SOI substrate. The altered layer is formed on at least the one surface of the glass substrate by cleaning the glass substrate with solution including hydrochloric acid, sulfuric acid or nitric acid. The altered layer has a higher proportion of silicon oxide in its composition and a lower density than the glass substrate.
摘要:
A high-performance semiconductor device using an SOI substrate in which a low-heat-resistance substrate is used as a base substrate. Further, a high-performance semiconductor device formed without using chemical polishing. Further, an electronic device using the semiconductor device. An insulating layer over an insulating substrate, a bonding layer over the insulating layer, and a single-crystal semiconductor layer over the bonding layer are included, and the arithmetic-mean roughness of roughness in an upper surface of the single-crystal semiconductor layer is greater than or equal to 1 nm and less than or equal to 7 nm. Alternatively, the root-mean-square roughness of the roughness may be greater than or equal to 1 nm and less than or equal to 10 nm. Alternatively, a maximum difference in height of the roughness may be greater than or equal to 5 nm and less than or equal to 250 nm.
摘要:
To provide a method for manufacturing an SOI substrate provided with a semiconductor layer which can be used practically even when a substrate having a low heat-resistant temperature, such as a glass substrate or the like is used. The semiconductor layer is transferred to a supporting substrate by the steps of irradiating a semiconductor wafer with ions from one surface to form a damaged layer; forming an insulating layer over one surface of the semiconductor wafer; attaching one surface of the supporting substrate to the insulating layer formed over the semiconductor wafer and performing heat treatment to bond the supporting substrate to the semiconductor wafer; and performing separation at the damaged layer into the semiconductor wafer and the supporting substrate. The damaged layer remaining partially over the semiconductor layer is removed by wet etching and a surface of the semiconductor layer is irradiated with a laser beam.
摘要:
To improve bonding strength and improve reliability of an SOI substrate in bonding a semiconductor substrate and a base substrate to each other even when an insulating film containing nitrogen is used as a bonding layer, an oxide film is provided on the semiconductor substrate side, a nitrogen-containing layer is provided on the base substrate side, and the oxide film formed on the semiconductor substrate and the nitrogen-containing layer formed over the base substrate are bonded to each other. Further, plasma treatment is performed on at least one of the oxide film and the nitrogen-containing layer before bonding the oxide film formed on the semiconductor substrate and the nitrogen-containing layer formed over the base substrate to each other. Plasma treatment can be performed in a state in which a bias voltage is applied.
摘要:
To improve bonding strength and improve reliability of an SOI substrate in bonding a semiconductor substrate and a base substrate to each other even when an insulating film containing nitrogen is used as a bonding layer, an oxide film is provided on the semiconductor substrate side, a nitrogen-containing layer is provided on the base substrate side, and the oxide film formed on the semiconductor substrate and the nitrogen-containing layer formed over the base substrate are bonded to each other. Further, plasma treatment is performed on at least one of the oxide film and the nitrogen-containing layer before bonding the oxide film formed on the semiconductor substrate and the nitrogen-containing layer formed over the base substrate to each other. Plasma treatment can be performed in a state in which a bias voltage is applied.
摘要:
It is an object of the present invention is to provide a method of manufacturing an SOI substrate provided with a single-crystal semiconductor layer which can be practically used even when a substrate having a low heat-resistant temperature, such as a glass substrate or the like, is used, and further, to manufacture a semiconductor device with high reliability by using such an SOI substrate. A semiconductor layer which is separated from a semiconductor substrate and bonded to a supporting substrate having an insulating surface is irradiated with electromagnetic waves, and the surface of the semiconductor layer is subjected to polishing treatment. At least part of a region of the semiconductor layer is melted by irradiation with electromagnetic waves, and a crystal defect in the semiconductor layer can be reduced. Further, the surface of the semiconductor layer can be polished and planarized by polishing treatment.
摘要:
Suppression of generation of a stripe pattern (unevenness) when an SOI substrate is manufactured by a glass substrate and a single crystal semiconductor substrate bonded to each other. A single crystal semiconductor substrate is irradiated with ions so that a fragile region is formed in the single crystal semiconductor substrate; a depression or a projection is formed in a region of a surface of an insulating layer provided on the single crystal semiconductor substrate, the region corresponding to the periphery of the single crystal semiconductor substrate; the single crystal semiconductor substrate is bonded to a base substrate; thermal treatment is performed thereon to separate the single crystal semiconductor substrate at the fragile region, so that a single crystal semiconductor layer is formed over the base substrate; and the single crystal semiconductor layer in the region corresponding to the periphery is removed.