摘要:
A high-performance semiconductor device using an SOI substrate in which a low-heat-resistance substrate is used as a base substrate. Further, a high-performance semiconductor device formed without using chemical polishing. Further, an electronic device using the semiconductor device. An insulating layer over an insulating substrate, a bonding layer over the insulating layer, and a single-crystal semiconductor layer over the bonding layer are included, and the arithmetic-mean roughness of roughness in an upper surface of the single-crystal semiconductor layer is greater than or equal to 1 nm and less than or equal to 7 nm. Alternatively, the root-mean-square roughness of the roughness may be greater than or equal to 1 nm and less than or equal to 10 nm. Alternatively, a maximum difference in height of the roughness may be greater than or equal to 5 nm and less than or equal to 250 nm.
摘要:
To provide a method for manufacturing an SOI substrate provided with a semiconductor layer which can be used practically even when a substrate having a low heat-resistant temperature, such as a glass substrate or the like is used. The semiconductor layer is transferred to a supporting substrate by the steps of irradiating a semiconductor wafer with ions from one surface to form a damaged layer; forming an insulating layer over one surface of the semiconductor wafer; attaching one surface of the supporting substrate to the insulating layer formed over the semiconductor wafer and performing heat treatment to bond the supporting substrate to the semiconductor wafer; and performing separation at the damaged layer into the semiconductor wafer and the supporting substrate. The damaged layer remaining partially over the semiconductor layer is removed by wet etching and a surface of the semiconductor layer is irradiated with a laser beam.
摘要:
An object is to provide an SOI substrate provided with a semiconductor layer which can be used practically even when a glass substrate is used as a base substrate. Another object is to provide a semiconductor device having high reliability using such an SOI substrate. An altered layer is formed on at least one surface of a glass substrate used as a base substrate of an SOI substrate to form the SOI substrate. The altered layer is formed on at least the one surface of the glass substrate by cleaning the glass substrate with solution including hydrochloric acid, sulfuric acid or nitric acid. The altered layer has a higher proportion of silicon oxide in its composition and a lower density than the glass substrate.
摘要:
An object is to provide an SOI substrate provided with a semiconductor layer which can be used practically even when a glass substrate is used as a base substrate. Another object is to provide a semiconductor device having high reliability using such an SOI substrate. An altered layer is formed on at least one surface of a glass substrate used as a base substrate of an SOI substrate to form the SOI substrate. The altered layer is formed on at least the one surface of the glass substrate by cleaning the glass substrate with solution including hydrochloric acid, sulfuric acid or nitric acid. The altered layer has a higher proportion of silicon oxide in its composition and a lower density than the glass substrate.
摘要:
An object of the present invention is to provide a film forming method for forming a film with reduced defect and to provide a film forming method for forming a film with a uniform quality. In addition, another object is to provide a manufacturing method of a light emitting element which can be driven with low voltage. Further, another object is to provide a manufacturing method of a light emitting element with high light emission efficiency. A film with reduced defect and a uniform quality can be formed by fixing a substrate to a substrate holding unit so that at least a part of a surface of the substrate is exposed, evaporating a vapor deposition material from an evaporation source filled with the vapor deposition material, irradiating the vapor deposition material which is evaporated with a laser beam, and depositing the vapor deposition material on the surface of the substrate.
摘要:
It is an object of the present invention to provide a light emitting element which can be driven at a low voltage. Other objects of the present invention are to provide a light emitting element with a high luminescent efficiency; a light emitting element with a high luminance; a light emitting element having long-life luminescence; a light emitting element and an electronic device having reduced power consumption; and a light emitting element and an electronic device which can be manufactured at low cost. The light emitting element has a light emitting layer and a barrier layer between a first electrode and a second electrode, the light emitting layer contains a base material and an impurity element, and the barrier layer is provided so as to be in contact with the first electrode. Light emission is obtained when a voltage is applied such that a potential of the second electrode becomes higher than a potential of the first electrode.
摘要:
It is an object to provide a light emitting element capable of low-voltage driving; with high luminous efficiency; with high emission luminance; and with long emission lifetime. It is another object to provide a light emitting device and an electronic appliance in which power consumption is reduced; and which can be manufactured at low cost. A light emitting element is provided, including a light emitting layer and a layer including a composite material between a first electrode and a second electrode, where the light emitting layer includes a base material and an impurity element, the layer including the composite material includes an organic compound and an inorganic compound, the layer including the composite material is provided to be in contact with the second electrode, and light emission is obtained by application of a voltage so that an electric potential of the second electrode is higher than that of the first electrode.
摘要:
It is an object of the present invention to provide a method of separating a thin film transistor, and circuit or a semiconductor device including the thin film transistor from a substrate by a method different from that disclosed in the patent document 1 and transposing the thin film transistor, and the circuit or the semiconductor device to a substrate having flexibility. According to the present invention, a large opening or a plurality of openings is formed at an insulating film, a conductive film connected to a thin film transistor is formed at the opening, and a peeling layer is removed, then, a layer having the thin film transistor is transposed to a substrate provided with a conductive film or the like. A thin film transistor according to the present invention has a semiconductor film which is crystallized by laser irradiation and prevents a peeling layer from exposing at laser irradiation not to be irradiated with laser light.
摘要:
The present invention is to provide a laser irradiation method for performing homogeneous laser irradiation to the irradiation object even when the thickness of the irradiation object is not even. In the case of irradiating the irradiation object having uneven thickness, the laser irradiation is performed while keeping the distance between the irradiation object and the lens for condensing the laser beam on the surface of the irradiation object constant by using an autofocusing mechanism. In particular, when the irradiation object is irradiated with the laser beam by moving the irradiation object relative to the laser beam in the first direction and the second direction of the beam spot formed on the irradiation surface, the distance between the irradiation object and the lens is controlled by the autofocusing mechanism before the irradiation object is moved in the first and second directions.
摘要:
The present invention is to provide a laser irradiation method for performing homogeneous laser irradiation to the irradiation object even when the thickness of the irradiation object is not even. In the case of irradiating the irradiation object having uneven thickness, the laser irradiation is performed while keeping the distance between the irradiation object and the lens for condensing the laser beam on the surface of the irradiation object constant by using an autofocusing mechanism. In particular, when the irradiation object is irradiated with the laser beam by moving the irradiation object relative to the laser beam in the first direction and the second direction of the beam spot formed on the irradiation surface, the distance between the irradiation object and the lens is controlled by the autofocusing mechanism before the irradiation object is moved in the first and second directions.