摘要:
A first electrode and a second electrode to be used are electrodes each of which has a collector, and a porous material layer with electron conductivity placed between the collector and a separator, and each of which has a configuration wherein the porous material layer includes at least particles of a porous material with electron conductivity, and a thermoplastic resin being capable of binding the particles of the porous material together and having a softening point TB lower than a softening point TS of the separator. A production method includes a thermal treatment step of thermally treating a laminate at a thermal treatment temperature T1 satisfying a condition represented by Formula (1): TB≦T1
摘要翻译:所使用的第一电极和第二电极是各自具有集电体的电极和具有电子传导性的多孔材料层放置在集电体和隔板之间,并且每个具有其中多孔材料层至少包括 具有电子传导性的多孔材料的颗粒和能够将多孔材料的颗粒结合在一起并且具有低于软化点T S S的软化点T B B的热塑性树脂, SUB>分离器。 制造方法包括:热处理步骤,其以满足式(1)所示的条件的热处理温度T 1热处理层压体:T B T 1
摘要:
A first electrode and a second electrode to be used are electrodes each of which has a collector, and a porous material layer with electron conductivity placed between the collector and a separator, and each of which has a configuration wherein the porous material layer includes at least particles of a porous material with electron conductivity, and a thermoplastic resin being capable of binding the particles of the porous material together and having a softening point TB lower than a softening point TS of the separator. A production method includes a thermal treatment step of thermally treating a laminate at a thermal treatment temperature T1 satisfying a condition represented by Formula (1): TB≦T1
摘要翻译:所使用的第一电极和第二电极是各自具有集电体的电极和具有电子传导性的多孔材料层放置在集电体和隔板之间,并且每个具有其中多孔材料层至少包括 具有电子传导性的多孔材料的颗粒和能够将多孔材料的颗粒结合在一起并且具有低于软化点T S S的软化点T B B的热塑性树脂, SUB>分离器。 制造方法包括:热处理步骤,其以满足式(1)所示的条件的热处理温度T 1热处理层压体:T B T 1
摘要:
An anode is provided as one capable of suppressing rapid entrance/exit of lithium ions during quick charge-discharge and ensuring sufficient safety in use as an anode of a lithium-ion secondary battery. The anode is an anode for lithium-ion secondary battery having a current collector, and an active material-containing layer formed on the current collector, wherein the active material-containing layer is comprised of an outermost layer disposed on the farthest side from the current collector, and a lower layer composed of at least one layer disposed between the outermost layer and the current collector, and wherein a degree of flexion of the outermost layer is larger than a degree of flexion of the lower layer.
摘要:
A manufacturing method for an electrode for an electrochemical capacitor according to the present invention comprises a first process (steps S1-S3) for forming a polarizable electrode layer on a current collector, a second process (step S4) for subjecting the front surface of the polarizable electrode layer formed on the current collector, to an embossment work, and a third process (step S5) for flattening the front surface of the polarizable electrode layer as has undergone the embossment work. In this manner, in the invention, the front surface of the polarizable electrode layer undergoes the embossment work, so that the polarizable electrode layer is effectively compressed, and it is consequently permitted to achieve a high volume capacitance of at least 17 F/cm3. Moreover, after the embossment work, the resulting embossment is flattened, so that porous grains contained in the polarizable electrode layer are prevented from falling off, and it is permitted to ensure a high reliability.
摘要翻译:根据本发明的用于电化学电容器的电极的制造方法包括用于在集电器上形成可极化电极层的第一工序(步骤S1〜S3),第二工序(步骤S4) 形成在集电体上的极化电极层到压花加工,以及第三工序(步骤S5),使经过压花加工的可极化电极层的前表面变平。 以这种方式,在本发明中,可极化电极层的前表面进行压纹加工,使得可极化电极层被有效地压缩,从而允许达到至少17F / cm 2的高体积电容, SUP> 3 SUP>。 此外,在压花加工之后,所得到的压花变平,防止包含在可极化电极层中的多孔颗粒脱落,并且允许确保高可靠性。
摘要:
An anode for lithium-ion secondary battery is provided as one capable of ensuring sufficient safety (suppression of dendrites) while achieving a higher capacity (higher density of the electrode), and permitting formation of a lithium-ion secondary battery with excellent high-rate discharge performance. An anode for lithium-ion secondary battery has a current collector, and an active material-containing layer formed on the current collector, the active material-containing layer is comprised of an outermost layer disposed on the farthest side from the current collector, and a lower layer composed of at least one layer disposed between the outermost layer and the current collector, and a degree of flexion of the outermost layer is smaller than that of the lower layer.
摘要:
A manufacturing method for an electrode for an electrochemical capacitor according to the present invention comprises a first process (steps S1-S3) for forming a polarizable electrode layer on a current collector, a second process (step S4) for subjecting the front surface of the polarizable electrode layer formed on the current collector, to an embossment work, and a third process (step S5) for flattening the front surface of the polarizable electrode layer as has undergone the embossment work. In this manner, in the invention, the front surface of the polarizable electrode layer undergoes the embossment work, so that the polarizable electrode layer is effectively compressed, and it is consequently permitted to achieve a high volume capacitance of at least 17 F/cm3. Moreover, after the embossment work, the resulting embossment is flattened, so that porous grains contained in the polarizable electrode layer are prevented from falling off, and it is permitted to ensure a high reliability.
摘要翻译:根据本发明的用于电化学电容器的电极的制造方法包括用于在集电器上形成可极化电极层的第一工序(步骤S1〜S3),第二工序(步骤S4) 形成在集电体上的极化电极层到压花加工,以及第三工序(步骤S5),使经过压花加工的可极化电极层的前表面变平。 以这种方式,在本发明中,可极化电极层的前表面进行压纹加工,使得可极化电极层被有效地压缩,从而允许达到至少17F / cm 3的高体积电容。 此外,在压花加工之后,所得到的压花变平,防止包含在可极化电极层中的多孔颗粒脱落,并且允许确保高可靠性。
摘要:
An anode for lithium-ion secondary battery is provided as one capable of ensuring sufficient safety (suppression of dendrites) while achieving a higher capacity (higher density of the electrode), and permitting formation of a lithium-ion secondary battery with excellent high-rate discharge performance. An anode for lithium-ion secondary battery has a current collector, and an active material-containing layer formed on the current collector, the active material-containing layer is comprised of an outermost layer disposed on the farthest side from the current collector, and a lower layer composed of at least one layer disposed between the outermost layer and the current collector, and a degree of flexion of the outermost layer is smaller than that of the lower layer.
摘要:
The present invention provides a method of producing an electrode for electric double layer capacitor, which yields the electrode having excellent electrode characteristics with good production suitability, using a coating material exhibiting a good dispersion state. A method of producing an electrode for a capacitor, the method comprising the steps of: applying an undercoat layer coating material which comprises at least electrically conductive particles, a binder and a solvent onto the current collector to form the undercoat layer; and applying an electrode layer coating material which comprises at least a carbon material, a binder and a solvent onto the undercoat layer to form the electrode layer. In the preparation of the undercoat layer coating material and/or in the preparation of the electrode layer coating material, dispersing treatment is conducted with ceramic beads as a dispersing medium.
摘要:
An electric chemical capacitor includes first and second electrodes each including a collector 111, 121, a polarized electrode layer 112, 122 and an undercoat layer 113, 123 for bonding the collector and the polarized electrode layer with each other, and a separator put between the first and second electrodes so that the polarized electrode layers 112 and 122 face each other, wherein an end portion of each undercoat layer 113, 123 is located in the same position as or on the outer side of an end portion of the corresponding polarized electrode layer 112, 122, and located on the inner side of an end portion of the separator 130. Thus, the polarized electrode layers can be prevented from peeling from the collector. Further, the undercoat layers can be prevented from abutting against each other, and the undercoat layer of one electrode and the collector of the other electrode can be prevented from abutting against each other.
摘要:
An anode is provided as one capable of suppressing rapid entrance/exit of lithium ions during quick charge-discharge and ensuring sufficient safety in use as an anode of a lithium-ion secondary battery. The anode is an anode for lithium-ion secondary battery having a current collector, and an active material-containing layer formed on the current collector, wherein the active material-containing layer is comprised of an outermost layer disposed on the farthest side from the current collector, and a lower layer composed of at least one layer disposed between the outermost layer and the current collector, and wherein a degree of flexion of the outermost layer is larger than a degree of flexion of the lower layer.