Abstract:
Novel urethane-acrylate (UAC) Star monomers and polyurethane-acrylate (PUAC) aerogel polymers derived therefrom are described herein, along with other novel, related monomers and polymers. Also described herein are processes for preparing the UAC Star monomers, the PUAC aerogel polymers, and the other related monomers and polymers. The PUAC and related polymers herein are useful in various applications including in structural and thermal insulation.
Abstract:
The present disclosure provides cost-effective sol-gel methods to produce nanostructured, nanoporous vanadium oxides from inexpensive vanadium halides of the formula VOX3. In one aspect, a synthetic method for preparing vanadium (IV,V) mixed oxide gels is described comprising epoxide-assisted gelation of a vanadium halide of the formula VOX3, such as VOCl3. The resulting aerogels are robust and possess similar morphology and reactivity to gels fabricated via the significantly more costly vanadium alkoxide methods.
Abstract:
Novel urethane-acrylate (UAC) Star monomers and polyurethane-acrylate (PUAC) aerogel polymers derived therefrom are described herein, along with other novel, related monomers and polymers. Also described herein are processes for preparing the UAC Star monomers, the PUAC aerogel polymers, and the other related monomers and polymers. The PUAC and related polymers herein are useful in various applications including in structural and thermal insulation.
Abstract:
The present disclosure provides a series of new and improved porous polyamide aerogels derived from multifunctional aromatics that combine the high mechanical strength of aramids with the pore structure of aerogels. The polyamide aerogels have a hyperbranched structure, relatively low density, high porosity and may be derived from functionalized monomers having more aromatic groups than functional groups. The present disclosure also provides a new method for producing the porous polyamide aerogels by polymerizing an aromatic multifunctional carboxylic acid or a ferrocene multifunctional carboxylic acid with a polyfunctional aromatic isocyanate at moderate reaction conditions followed by drying with liquid CO2. Also disclosed are various methods of use of these polyamide aerogels in a variety of applications.
Abstract:
The present disclosure provides a series of new and improved porous polyamide aerogels derived from multifunctional aromatics that combine the high mechanical strength of aramids with the pore structure of aerogels. The polyamide aerogels have a hyperbranched structure, relatively low density, high porosity and are derived from functionalized monomers having more aromatic groups than functional groups. The present disclosure also provides a new method for producing the porous polyamide aerogels by polymerizing an aromatic multifunctional carboxylic acid with an isocyanate at moderate reaction condition followed by drying with liquid CO2.
Abstract:
The present invention discloses novel methods for producing highly porous ceramic and/or metal aerogel monolithic objects that are hard, sturdy, and resistant to high temperatures. These methods comprise preparing nanoparticulate oxides of metals and/or metalloids via a step of vigorous stirring to prevent gelation, preparing polymer-modified xerogel powder compositions by reacting said nanoparticulate oxides with one or more polyfunctional monomers, compressing said polymer-modified xerogel powder compositions into shaped compacts, and carbothermal conversion of the shaped xerogel compacts via pyrolysis to provide the highly porous ceramic and/or metal aerogel monolithic objects that have the same shapes as to their corresponding xerogel compact precursors. Representative of the highly porous ceramic and/or metal aerogel monolithic objects of the invention are ceramic and/or metal aerogels of Si, Zr, Hf, Ti, Cr, Fe, Co, Ni, Cu, Ru, Au, and the like. Examples include sturdy, shaped, highly porous silicon carbide (SiC), silicon nitride (Si3N4), zirconium carbide (ZrC), hafnium carbide (HfC), chromium carbide (Cr3C2), titanium carbide (TiC), zirconium boride (ZrB2), hafnium boride (HfB2), and metallic aerogels of iron (Fe), nickel (Ni), cobalt (Co), copper (Cu), ruthenium (Ru), gold (Au), and the like. Said aerogel monolithic objects have utility in various applications such as, illustratively, in abrasives, in cutting tools, as catalyst support materials such as in reformers and converters, as filters such as for molten metals and hot gasses, in bio-medical tissue engineering such as bone replacement materials, in applications requiring strong lightweight materials such as in automotive and aircraft structural components, in ultra-high temperature ceramics, and the like.
Abstract:
The present invention discloses novel methods for producing highly porous ceramic and/or metal aerogel monolithic objects that are hard, sturdy, and resistant to high temperatures. These methods comprise preparing nanoparticulate oxides of metals and/or metalloids via a step of vigorous stirring to prevent gelation, preparing polymer-modified xerogel powder compositions by reacting said nanoparticulate oxides with one or more polyfunctional monomers, compressing said polymer-modified xerogel powder compositions into shaped compacts, and carbothermal conversion of the shaped xerogel compacts via pyrolysis to provide the highly porous ceramic and/or metal aerogel monolithic objects that have the same shapes as to their corresponding xerogel compact precursors. Representative of the highly porous ceramic and/or metal aerogel monolithic objects of the invention are ceramic and/or metal aerogels of Si, Zr, Hf, Ti, Cr, Fe, Co, Ni, Cu, Ru, Au, and the like. Examples include sturdy, shaped, highly porous silicon carbide (SiC), silicon nitride (Si3N4), zirconium carbide (ZrC), hafnium carbide (HfC), chromium carbide (Cr3C2), titanium carbide (TiC), zirconium boride (ZrB2), hafnium boride (HfB2), and metallic aerogels of iron (Fe), nickel (Ni), cobalt (Co), copper (Cu), ruthenium (Ru), gold (Au), and the like. Said aerogel monolithic objects have utility in various applications such as, illustratively, in abrasives, in cutting tools, as catalyst support materials such as in reformers and converters, as filters such as for molten metals and hot gasses, in bio-medical tissue engineering such as bone replacement materials, in applications requiring strong lightweight materials such as in automotive and aircraft structural components, in ultra-high temperature ceramics, and the like.
Abstract:
Novel compounds and polymer aerogels derived from these compounds are provided. The highly porous, monolithic polymer aerogels are extremely robust having high surface areas, large micropore volumes. and high density of nitrogen and oxygen functionalities. Due to these extraordinary properties, the polymer aerogels possess a high carbon dioxide (CO2) sorption capacity and are highly selective towards CO2 versus other gases, such as H2 and N2. As a result, the polymer aerogels can be used to effectively capture or remove CO2 from the air and/or from flue gases.
Abstract:
The present invention is directed to a process for preparing a porous material, at least compris-ing the steps of providing a mixture (I) comprising a composition (A) at least comprising at least one polyfunctional isocyanate as component (ai) and at least one mineral acid (aa), and a sol-vent (B), reacting the components in the composition (A) obtaining an organic gel, and drying of the gel obtained. The invention further relates to the porous materials which can be obtained in this way and the use of the porous materials as thermal insulation material and as catalysts.
Abstract:
The present disclosure provides a series of new and improved porous polyamide aerogels derived from multifunctional aromatics that combine the high mechanical strength of aramids with the pore structure of aerogels. The polyamide aerogels have a hyperbranched structure, relatively low density, high porosity and may be derived from functionalized monomers having more aromatic groups than functional groups. The present disclosure also provides a new method for producing the porous polyamide aerogels by polymerizing an aromatic multifunctional carboxylic acid or a ferrocene multifunctional carboxylic acid with a polyfunctional aromatic isocyanate at moderate reaction conditions followed by drying with liquid CO2. Also disclosed are various methods of use of these polyamide aerogels in a variety of applications.