Abstract:
A method and composition comprising hydrolyzed starch. In a first aspect, the method comprises several steps. A first step comprises combining at least a portion of pulse and a suitable enzyme to form an enzyme-pulse starting mixture. The enzyme-pulse starting mixture comprises starch. A second step comprises heating the enzyme-pulse starting mixture to between about 48.89° C. and about 93.33° C. to begin to hydrolyze the starch, thereby providing a heated pulse mixture. A third step comprises extruding the heated pulse mixture to continue hydrolyzing the starch and further to gelatinize and cook the heated pulse mixture thereby providing a pulse product comprising gelatinized, hydrolyzed starch. In a second aspect, the invention provides a composition comprising at least a portion of pulse, and the at least a portion of pulse comprises gelatinized, hydrolyzed starch.
Abstract:
A method and composition for providing hydrolyzed starch and fiber. In one aspect, the method comprises providing a first enzyme; a second enzyme; water; and a starting composition comprising at least one material selected from the group consisting of at least a portion of grain and at least a portion of pulse. Additional steps comprise hydrolyzing the fiber and starch in the at least one material through fiber and starch hydrolysis reactions catalyzed by the first and second enzymes, respectively. Further steps comprise deactivating the first and second enzymes. In a second aspect, a composition comprises at least one material selected from the group consisting of at least a portion of grain and at least a portion of pulse. The average molecular weights of the hydrolyzed starch and fiber molecules in the composition are fractions of the molecular weights of unhydrolyzed starch and fiber molecules, respectively.
Abstract:
A method and apparatus for controlled hydrolysis. The method can comprise hydrolyzing a first reagent in a first hydrolysis reaction and deactivating a first enzyme catalyzing the first hydrolysis reaction. The deactivating step can occur in about 10 seconds or less; the deactivating step can comprise adding a deactivating fluid to a composition comprising the first enzyme and heating the first enzyme using a deactivating mechanism. In other aspects, hydrolyzing the first reagent and deactivating the first enzyme can occur in a conduit, and the first hydrolysis reaction can occur in a composition that is at least 50% water by weight. The apparatus can provide a hydrolysis reactor comprising: a conduit; a composition inlet in the conduit for a composition; a first enzyme inlet in the conduit downstream of the composition inlet; and a first deactivating mechanism downstream of the first enzyme inlet to deactivate the first enzyme.
Abstract:
A method and composition comprising hydrolyzed starch. In a first aspect, the method comprises several steps. A first step comprises combining at least a portion of pulse and a suitable enzyme to form an enzyme-pulse starting mixture. The enzyme-pulse starting mixture comprises starch. A second step comprises heating the enzyme-pulse starting mixture to between about 48.89° C. and about 93.33° C. to begin to hydrolyze the starch, thereby providing a heated pulse mixture. A third step comprises extruding the heated pulse mixture to continue hydrolyzing the starch and further to gelatinize and cook the heated pulse mixture thereby providing a pulse product comprising gelatinized, hydrolyzed starch. In a second aspect, the invention provides a composition comprising at least a portion of pulse, and the at least a portion of pulse comprises gelatinized, hydrolyzed starch.
Abstract:
A method and composition comprising hydrolyzed starch. In a first aspect, the method comprises several steps. A first step comprises combining at least a portion of pulse and a suitable enzyme to form an enzyme-pulse starting mixture. The enzyme-pulse starting mixture comprises starch. A second step comprises heating the enzyme-pulse starting mixture to between about 48.89° C. and about 93.33° C. to begin to hydrolyze the starch, thereby providing a heated pulse mixture. A third step comprises extruding the heated pulse mixture to continue hydrolyzing the starch and further to gelatinize and cook the heated pulse mixture thereby providing a pulse product comprising gelatinized, hydrolyzed starch. In a second aspect, the invention provides a composition comprising at least a portion of pulse, and the at least a portion of pulse comprises gelatinized, hydrolyzed starch.
Abstract:
A method and composition for providing hydrolyzed starch and fiber. In one aspect, the method comprises providing a first enzyme; a second enzyme; water; and a starting composition comprising at least one material selected from the group consisting of at least a portion of grain and at least a portion of pulse. Additional steps comprise hydrolyzing the fiber and starch in the at least one material through fiber and starch hydrolysis reactions catalyzed by the first and second enzymes, respectively. Further steps comprise deactivating the first and second enzymes. In a second aspect, a composition comprises at least one material selected from the group consisting of at least a portion of grain and at least a portion of pulse. The average molecular weights of the hydrolyzed starch and fiber molecules in the composition are fractions of the molecular weights of unhydrolyzed starch and fiber molecules, respectively.
Abstract:
A method of preparing a highly dispersible whole grain oat flour by hydrolyzing, milling and agglomerating grain flour to arrive at a whole grain oat flour having an increased avenanthramide content compared to native oat flour.
Abstract:
A method and composition comprising hydrolyzed starch. In a first aspect, the method comprises several steps. A first step comprises combining at least a portion of pulse and a suitable enzyme to form an enzyme-pulse starting mixture. The enzyme-pulse starting mixture comprises starch. A second step comprises heating the enzyme-pulse starting mixture to between about 48.89° C. and about 93.33° C. to begin to hydrolyze the starch, thereby providing a heated pulse mixture. A third step comprises extruding the heated pulse mixture to continue hydrolyzing the starch and further to gelatinize and cook the heated pulse mixture thereby providing a pulse product comprising gelatinized, hydrolyzed starch. In a second aspect, the invention provides a composition comprising at least a portion of pulse, and the at least a portion of pulse comprises gelatinized, hydrolyzed starch.
Abstract:
A method and apparatus for controlled hydrolysis. The method can comprise hydrolyzing a first reagent in a first hydrolysis reaction and deactivating a first enzyme catalyzing the first hydrolysis reaction. The deactivating step can occur in about 10 seconds or less; the deactivating step can comprise adding a deactivating fluid to a composition comprising the first enzyme and heating the first enzyme using a deactivating mechanism. In other aspects, hydrolyzing the first reagent and deactivating the first enzyme can occur in a conduit, and the first hydrolysis reaction can occur in a composition that is at least 50% water by weight. The apparatus can provide a hydrolysis reactor comprising: a conduit; a composition inlet in the conduit for a composition; a first enzyme inlet in the conduit downstream of the composition inlet; and a first deactivating mechanism downstream of the first enzyme inlet to deactivate the first enzyme.