摘要:
A unitary intravascular defibrillating catheter includes distal and proximal spring electrodes, displaced to such distance from one another that defibrillating shock is effected through a field including the interventricular septum and left ventricular free wall. In one embodiment of this catheter, the proximal electrode is placed in the region of the subclavian vein. Alternatively, it may be placed in the region of the third through seventh intercostal space. A unitary catheter is also described which includes an intermediate electrode, placed between distal and proximal electrodes. Selection of placement of electrodes either in the superior vena cava or in the region of the subclavian vein is medically indicated by physiological conditions of the individual patient. The cardioversion system further includes a unipolar or bipolar sensing circuit with at least one sensing electrode, and a cardioversion/defibrillation circuit with either two or three spaced apart spring electrodes. The sensing electrodes are spaced apart from one another, but they are kept sufficiently close to one another for isolated, localized R-wave sensing. The sensing electrodes further are positioned remotely of the cardioversion/defibrillation electrodes, to avoid post-shock abnormalities which otherwise would interfere with a timely R-wave sensing, and to substantially prevent the discharge of an unnecessary cardioversion pulse after return of the heart to normal cardiac rhythm.
摘要:
A cardioversion system includes a bipolar sensing circuit with two sensing electrodes, and a cardioversion circuit with two spaced apart spring electrodes. The sensing electrodes are spaced apart from one another but kept sufficiently close to one another for isolated, localized R-wave sensing. The sensing electrodes further are positioned remotely of the cardioversion electrodes, to avoid post-shock abnormalities which otherwise would interfere with a timely R-wave sensing, to substantially prevent the discharge of an unnecessary cardioversion pulse after return of the heart to normal cardiac rhythm. One preferred version of the system is a unitary catheter including a distal tip electrode and ring electrode as the sensing electrodes, and to substantially larger, more proximal spring electrodes for defibrillation. Alternatively, the defibrillation electrodes and the sensing electrodes can be provided on two separate catheters. Yet another alternative involves providing one or more patch electrodes as defibrillation electrodes.
摘要:
A unitary intravascular defibrillating catheter includes distal and proximal spring electrodes, displaced to such distance from one another that defibrillating shock is effected through a field including the interventricular septum and left ventricular free wall. In one embodiment of this catheter, the proximal electrode is placed in the region of the subclavian vein. Alternatively, it may be placed in the region of the third through seventh intercostal space. A unitary catheter is also described which includes an intermediate electrode, placed between distal and proximal electrodes. Selection of placement of electrodes either in the superior vena cava or in the region of the subclavian vein is medically indicated by physiological conditions of the individual patient.The cardioversion system further includes a unipolar or bipolar sensing circuit with at least one sensing electrode, and a cardioversion/defibrillation circuit with either two or three spaced apart spring electrodes. The sensing electrodes are spaced apart from one another, but they are kept sufficiently close to one another for isolated, localized R-wave sensing. The sensing electrodes further are positioned remotely of the cardioversion/defibrillation electrodes, to avoid post-shock abnormalities which otherwise would interfere with a timely R-wave sensing, and to substantially prevent the discharge of an unnecessary cardioversion pulse after return of the heart to normal cardiac rhythm.
摘要:
An apparatus for stimulating and sensing evoked response to stimulus in the heart. First and second electrodes are in electrical contact with the heart, a third indifferent electrode is also in electrical contact with the heart. A pacemaker provides stimulus signals through the electrodes in the stimulating mode of operation. The first and second electrodes are switched through switching apparatus wherein in the first mode the first and second electrodes are maintained at equal electrical potentials, and in a second, sensing mode, the switch operates between the first and second electrodes so as to allow the first and second electrodes to act as bipolar sensing leads. Evoked response is sensed by a differential amplifier having a first differential input connected to the first electrode and a second differential input connected to the second electrode. The differential amplifier provides a differential signal which is proportional to the evoked cardiac response.
摘要:
An implantable defibrillation/cardioversion system and method comprising an electrode having a plurality of discrete electrically conductive segments. The conductive segments are electrically isolated from each other and electrically connected to a defibrillation/cardioversion unit. An electrical pulse block is generated and chopped into a plurality of discrete pulse segments by the defibrillation/cardioversion unit and applied to the electrode so that each conductive segment receives a particular electrical pulse assigned from the series of pulses. In this way, the concentration of gas generated from ionic current produced by a high energy defibrillation pulse is reduces and more energy is delivered to the heart, thus reducing the required energy input to the electrode. The electrode may be planar or in a catheter electrode configuration.
摘要:
Implantable electrodes for defibrillation are formed of pluralities of electrode segments. Each of the segments is relatively long and narrow. The electrode segments can be parallel and spaced apart from one another a distance at least ten times the nominal width, with one end of each segment mounted to a transverse distal portion of an electrically conductive lead coupling the electrode to a defibrillation pulse generator. Alternatively, segments can branch or radiate outwardly from a common junction. In yet another arrangement, electrode segments are portions of a single conductive path at the distal end of a lead from a pulse generator, arranged in either a spiral configuration or a serpentine configuration which can align electrode segments side by side, parallel and spaced apart. The electrode segments can be formed of composite conductors in the form of titanium ribbons or wires with a sputtered outer layer of platinum, or a silver core in a stainless steel tube, with a platinum layer formed onto the tube. The electrodes are highly compliant yet can provide large effective areas for defibrillation, enabling a transthoracic pulsing arrangement of two electrodes on opposite sides of the heart, implanted subcutaneously outside of the thoracic region.
摘要:
Implantable electrodes for defibrillation are formed of pluralities of electrode segments. Each of the segments is relatively long and narrow. The electrode segments can be parallel and spaced apart from one another a distance at least ten times the nominal width, with one end of each segment mounted to a transverse distal portion of an electrically conductive lead coupling the electrode to a defibrillation pulse generator. Alternatively, segments can branch or radiate outwardly from a common junction. In yet another arrangement, electrode segments are portions of a single conductive path at the distal end of a lead from a pulse generator, arranged in either a spiral configuration or a serpentine configuration which can align electrode segments side by side, parallel and spaced apart. The electrode segments can be formed of composite conductors in the form of titanium ribbons or wires with a sputtered outer layer of platinum, or a silver core in a stainless steel tube, with a platinum layer formed onto the tube. The electrodes are highly compliant yet can provide large effective areas for defibrillation, enabling a transthoracic pulsing arrangement of two electrodes on opposite sides of the heart, implanted subcutaneously outside of the thoracic region.
摘要:
Implantable electrodes for defibrillation are formed of pluralities of electrode segments. Each of the segments is relatively long and narrow. The electrode segments can be parallel and spaced apart from one another a distance at least ten times the nominal width, with one end of each segment mounted to a transverse distal portion of an electrically conductive lead coupling the electrode to a defibrillation pulse generator. Alternatively, segments can branch or radiate outwardly from a common junction. In yet another arrangement, electrode segments are portions of a single conductive path at the distal end of a lead from a pulse generator, arranged in either a spiral configuration or a serpentine configuration which can align electrode segments side by side, parallel and spaced apart. The electrode segments can be formed of composite conductors in the form of titanium ribbons or wires with a sputtered outer layer of platinum, or a silver core in a stainless steel tube, with a platinum layer formed onto the tube. The electrodes are highly compliant yet can provide large effective areas for defibrillation, enabling a transthoracic pulsing arrangement of two electrodes on opposite sides of the heart, implanted subcutaneously outside of the thoracic region.
摘要:
Implantable electrodes for defibrillation are formed of pluralities of electrode segments. Each of the segments is relatively long and narrow. The electrode segments can be parallel and spaced apart from one another a distance at least ten times the nominal width, with one end of each segment mounted to a transverse distal portion of an electrically conductive lead coupling the electrode to a defibrillation pulse generator. Alternatively, segments can branch or radiate outwardly from a common junction. In yet another arrangement, electrode segments are portions of a single conductive path at the distal end of a lead from a pulse generator, arranged in either a spiral configuration or a serpentine configuration which can align electrode segments side by side, parallel and spaced apart. The electrode segments can be formed of composite conductors in the form of titanium ribbons or wires with a sputtered outer layer of platinum, or a silver core in a stainless steel tube, with a platinum layer formed onto the tube. The electrodes are highly compliant yet can provide large effective areas for defibrillation, enabling a transthoracic pulsing arrangement of two electrodes on opposite sides of the heart, implanted subcutaneously outside of the thoracic region.
摘要:
A defibrillation electrode for implantation in the region of the heart and for connection to a defibrillation system. The electrode comprises multiple independent conductive segments spaced apart for defining a discharge surface of the electrode. In one embodiment, the electrode comprises a plurality of concentric conductive rings electrically connected together. To smooth the current distribution, the interface impedance of the inner conductive segments is made lower than that of the outer conductive segments. In one embodiment, the impedance is determined by the choice of the conductive material. In another embodiment, the impedance is determined by texturing the surface of the conductive segments. In yet another embodiment, the impedance is determined by the ratio of conductive edges to surface of the conductive segment. The discharge surface region can also take the form of a portion of a cardiac catheter.Other ways to control the current distribution include the use of a floating conductive segment, and the use of discrete segments which receive defibrillating waveforms of different amplitudes and isolating the conductive segments to deliver higher amplitude waveforms in the inner segments than the outer segments.