摘要:
Particles are provided for use in therapeutic cosmetic and/or reconstructive procedures to augment defects in tissue to restore contours and/or function. The particles include poly[bis(trifluoroethoxy)phosphazene] and/or a derivatives thereof which may be present throughout the particles or within an outer coating of the particles. The particles may also include a core having a hydrogel formed from an acrylic-based polymer. Such particles may be provided to a user in various colors or with customized coloration to match desired tissues. Moreover, such particles may be loaded to provide localized treatment with an active component agent in specific clinical uses. Particles of the present invention may further be provided or used in conjunction with tissue adhesives or photoinitiator agents that may be activated by electromagnetic radiation or other energy sources to allow post-implantation cross-linking of the polymeric particles to cause their amalgamation to maintain their shape and location following implantation.
摘要:
Particles are provided for use in therapeutic and/or diagnostic procedures. The particles include poly[bis(trifluoroethoxy)phosphazene] and/or a derivatives thereof which may be present throughout the particles or within an outer coating of the particles. The particles may also include a core having a hydrogel formed from an acrylic-based polymer. Such particles may be provided for placement within defects in bone within the body of a mammal to augment structural support and facilitate osteogenesis without causing adverse reactions therein. The hydrogel core may further be used as a delivery vehicle for therapeutic agents to treat or retard pathologic processes within the bone defect during healing.
摘要:
The present invention relates to the use of certain microspheres, nanospheres, and other structures to provide a method of marking or masking identifying marks in individual biological hosts. Biological hosts for the present invention may include humans, other animals, or plants. Such methods may be used to sense, signal, track, mark, or identify individual biological hosts. Microspheres, nanospheres, and other structures of the present invention may be implanted, injected, ingested, or attached to individual biological hosts. Microspheres, nanospheres, and other structures of the present invention comprise poly[bis(trifluoroethoxy)phosphazene] and/or a derivative thereof which may be present throughout the particles or within an outer coating of the particles. The microspheres, nanospheres, and other structures may also comprise a core having a hydrogel which may further comprise one or more dyes or other chromophoric agents covalently bound permanently to the hydrogel core material. The microspheres, nanospheres, and other structures and/or the hydrogel core may further comprise radio frequency or other electronic chips or nanochips, capable of transmitting and/or receiving electronic signals from external transmitters and/or receivers.
摘要:
Various embodiments are directed to color-coded and size-calibrated polymeric particles comprising an acrylate-based hydrogel core incorporating one or more chromophores of interest, and an outer shell comprising polyphosphazenes of formula I, useful for various therapeutic and/or diagnostic procedures. In various embodiments, the color-coded and size-calibrated polymeric particles can be employed in any particle-mediated procedure, including as embolic agents, dermal fillers, and various implantable devices for a broad range of clinical and cosmetic applications. The incorporation of a particular chromophore formulation that correlates with a pre-determined size specificity for implantable and loadable polymeric particles (“color-coded and size-calibrated”) enables the visual detection and identification of particles exhibiting a particular size of interest, and minimizes the probability of user-introduced or procedural errors.
摘要:
Various embodiments are directed to color-coded and size-calibrated polymeric particles comprising an acrylate-based hydrogel core incorporating one or more chromophores of interest, and an outer shell comprising polyphosphazenes of formula I, useful for various therapeutic and/or diagnostic procedures. In various embodiments, the color-coded and size-calibrated polymeric particles can be employed in any particle-mediated procedure, including as embolic agents, dermal fillers, and various implantable devices for a broad range of clinical and cosmetic applications. The incorporation of a particular chromophore formulation that correlates with a pre-determined size specificity for implantable and loadable polymeric particles (“color-coded and size-calibrated”) enables the visual detection and identification of particles exhibiting a particular size of interest, and minimizes the probability of user-introduced or procedural errors.
摘要:
Polymeric particles are provided for use in therapeutic and/or diagnostic procedures. The particles include poly[bis(trifluoroethoxy) phosphazene] and/or a derivatives thereof which may be present throughout the particles or within an outer coating of the particles. The particles may also include a core having a hydrogel formed from an acrylic-based polymer. Such particles may be provided to a user in specific selected sizes to allow for selective embolization of certain sized blood vessels or localized treatment with an active component agent in specific clinical uses. Particles of the present invention may further be provided as color-coded microspheres or nanospheres to allow ready identification of the sized particles in use. Such color-coded microspheres or nanospheres may further be provided in like color-coded delivery or containment devices to enhance user identification and provide visual confirmation of the use of a specifically desired size of microspheres or nanospheres.
摘要:
Particles are provided for use in therapeutic and/or diagnostic procedures. The particles include poly[bis(trifluoroethoxy)phosphazene] and/or a derivatives thereof which may be present throughout the particles or within an outer coating of the particles. The particles can also include a core having a hydrogel formed from an acrylic-based polymer. Such particles may be provided to a user in specific selected sizes to allow for selective embolization of certain sized blood vessels or localized treatment with an active component agent in specific clinical uses. Microspheres of the present invention may further be provided with physical and/or chemical enhancements within the particles' cores to enhance visualization of the embolized tissue using a variety of medical imaging modalities, including conventional radiography, fluoroscopy, tomography, computerized tomography, ultrasound, scintillation, magnetic resonance, or other imaging technologies.
摘要:
Polymeric particles are provided for use in therapeutic and/or diagnostic procedures. The particles include poly[bis(trifluoroethoxy)phosphazene] and/or a derivatives thereof which may be present throughout the particles or within an outer coating of the particles. The particles may also include a core having a hydrogel formed from an acrylic-based polymer. Such particles may be provided to a user in specific selected sizes to allow for selective embolization of certain sized blood vessels or localized treatment with an active component agent in specific clinical uses. Particles of the present invention may further be provided as color-coded microspheres or nanospheres to allow ready identification of the sized particles in use. Such color-coded microspheres or nanospheres may further be provided in like color-coded delivery or containment devices to enhance user identification and provide visual confirmation of the use of a specifically desired size of microspheres or nanospheres.
摘要:
The present invention relates to expandable semi-compliant devices that may be used for the treatment of diseased or injured bone tissues, and methods of using the same. The semi-compliant device of the present invention is inserted into an interior space of a cancellous bone tissue, and is filled with a suitable material to provide internal structural support to the bone. The semi-compliant device may further comprise a polymer or a polymer surface coating of a biocompatible polyphosphazene polymer such as poly[bis-(trifluoroethoxy)phosphazene] or derivatives thereof. Such semi-compliant devices or surface coatings may also act as carriers for medicinal, radiological, or thermal treatments of diseased bone.
摘要:
Various embodiments are directed to multi-functional wound-care dressing matrices that can protect and promote new tissue growth at a wound site. The multi-functional wound care matrix can incorporate polyphosphazenes of formula I, as a component that can be configured into various forms, including as fibrous mats, porous membranes, nonporous films, particulate formulations, and equivalents. The multi-functional wound-care dressing matrix of the present disclosure exhibit high-performance properties conferred by polyphosphazenes of formula I. Exceptional biocompatible properties of polyphosphazenes of formula I provide an ideal tissue-contacting surface for the multi-functional wound-care dressing matrix of interest.