摘要:
A method and system is disclosed for design and implementation of fixed-point filters from floating-point filters. A design sequence for designing a fixed-point filter for a system is selected. A low-order floating-point filter and a first set of parameters associated with the low-order floating-point filter components are then selected. One or more parameters of the first set of parameters is then iteratively modified to obtain a set of modified parameters, until a plurality of performance characteristics calculated using the first set of parameters meets a performance objective for the fixed-point filter for the system.
摘要:
The present invention includes a method and system for compensating for cross-talk interference in communication systems. The method includes estimation of the interfering signals. Further, the method includes performing a compensation operation on at least one interfering signal.
摘要:
Signals in a multi-channel, impaired communication system are post-processed at the receiver. A triangular matrix Decision Feedback Demodulator (DFD) at the receiver extracts channels without requiring delivery of receiver parameters to the transmitter. Multi-Input Multi-Output (MIMO) processing matrices and DFD parameters are computed by first applying matrix transformations to diagonalize the noise covariance matrix of the multiple channels received at the receiver. QR decompositions (i.e., decompositions into orthogonal and triangular matrices) are then applied to the main channels to obtain triangular channel matrices. The noise-diagonalizing transformations and QR decompositions are then combined to form the MIMO postprocessing matrices and DFD parameters. MIMO postprocessing matrices and DFD parameters are computed from training data and then adapted during live data transmission.
摘要:
Signals in a multi-channel, impaired communication system are post-processed at the receiver. A triangular matrix Decision Feedback Demodulator (DFD) at the receiver extracts channels without requiring delivery of receiver parameters to the transmitter. Multi-Input Multi-Output (MIMO) processing matrices and DFD parameters are computed by first applying matrix transformations to diagonalize the noise covariance matrix of the multiple channels received at the receiver. QR decompositions (i.e., decompositions into orthogonal and triangular matrices) are then applied to the main channels to obtain triangular channel matrices. The noise-diagonalizing transformations and QR decompositions are then combined to form the MIMO postprocessing matrices and DFD parameters. MIMO postprocessing matrices and DFD parameters are computed from training data and then adapted during live data transmission.