Abstract:
A television receiver includes a source of digital data comprising a plurality of data streams each representing one of a standard definition television signal and a high definition television signal and encoded in such a manner that it may be decoded at full resolution to produce an image substantially without visible decoding artifacts or decoded at partial resolution to produce an image possibly including visible decoding artifacts. A decoder is coupled to the digital data source, and has a maximum decoding bandwidth less than that required to simultaneously decode two high definition television signals at full decoding resolution. A controller, is coupled to the decoder, for selecting two respective ones of the data streams responsive to user input, and if both represent a high definition television signal, requesting user input for specifying one of the two respective data streams to decode at partial resolution.
Abstract:
A data storage element comprising a substrate and a data track disposed on the substrate, the data track comprising a plurality of data sectors, each of the data sectors being formatted in accordance with a first digital data standard and comprised of a control data portion and a payload data portion, each of the payload portions including a plurality of data packets formatted in accordance with a digital television standard. In particular, the data packs correspond to program stream packs specified in the DVD standard and the data packets correspond to transport packets specified in the ATSC standard. The present storage element enables the data stored thereon to be read by a conventional DVD front end and provided to an ATSC receiver without processing the contents of the transport packets. Therefore, the present invention allows ATSC data to be stored on a DVD disc and to be provided in a manner that can fully realize the display capabilities of the ATSC receiver. The present invention is particularly advantageous in HDTV applications.
Abstract:
A method and a system for performing trick mode features in a personal video recorder without introducing a channel change delay during normal viewing. The method includes the steps of recording a video source signal and concurrently bypassing the video source signal to a display device, without experiencing any buffering delay associated with the recording step. During trick mode operation the bypassing step can be automatically terminated and a recorded version of the video source signal can be substituted and sent to the display. The bypassing step further can include substituting, without any buffering delay, an alternate video source signal in response to a user selection of an alternate video source signal channel. A user notification can be generated to acknowledge receipt of a trick mode command. The user notification can be terminated once the step of substituting the recorded version of the video source signal has been completed.
Abstract:
A Conversion system merges and converts data in a plurality of different data formats from a plurality of different sources, to a selected output data format for transmission on a selected transmission channel. A method for digital data format conversion involves de-packetizing an input packetized datastream. A timing recovery parameter is formed in response to a desired output data format. The depacketized data is re-packetized in response to the desired output data format and the timing recovery parameter is incorporated in the re-packetized data. The re-packetized data is multiplexed in response to the selected format and provided to an output channel.
Abstract:
A decoder excludes an encryption code or key from decrypted or non-decrypted program output data. Decrypted program representative data is generated from an input datastream containing encrypted program data and an associated encryption code. The encrypted program data is decrypted using the encryption to provide decrypted program data. An output datastream is formed containing the decrypted program data but excluding the encryption code. The encryption code may be excluded by submitting non-encryption code data for the encryption code. The output datastream may also contain ancillary date formed to support decoding of the decrypted program data.
Abstract:
At least one implementation interleaves blocks from a stereo-image pair and enables intra-coding of the interleaved image using corresponding blocks as references. One particular implementation accesses a first image that includes multiple blocks, one of which is a first-image block. A second image is accessed that includes multiple blocks, one of which is a second-image block that has overlapping content with the first-image block. The multiple blocks of the first and second images are interleaved on a block basis to form an interleaved image. At least a portion of the interleaved image is encoded by encoding the first-image block using the second-image block as a reference. Another implementation provides the encoded portion in signal. Yet another implementation accesses the encoded image and decodes the portion by using the second-image block as a reference.
Abstract:
A method and apparatus for simultaneously recording and displaying video signals from two different video sources. The apparatus comprises a main channel processing circuit/logic, a second channel processing circuit/logic, and common circuitry/logic. The common circuitry comprises a digital video encoder pipe that decodes both a first and second encoded video signals. The main channel processing circuit processes a first decoded video signal utilizing a first clock to form a main picture for display. The second channel processing circuit processes a second decoded video signal to form a PIP picture for combination with the main picture for display. The PIP picture is produced using a second clock signal that is independent from the first clock signal. In a record mode, the second channel clock is coupled to the second channel processing circuit to produce a recordable signal using a digital encoder. The recordable signal also forms the PIP picture that is coupled to the main channel processing circuit to produce a PIP picture that is used to monitor the recording process.
Abstract:
A method and an apparatus using a system level clocking scheme to remove jitter from multi-media packets distributed over an asynchronous network. The present invention overcomes the problems associated with jitter introduced in an asynchronous network by using various time stamps to synchronize a client device clock to a headend clock and to control the data flow in the client device to match the rate that the data is received by a broadband receiver coupled to the headend. The present invention allows the client device to synchronize to a selected one of a plurality of headend clock by including a clock adjustment factor along with the time stamps. The time stamps are added at the physical layer so that the time stamps correspond to the time the data packets are placed onto and received from the asynchronous network.
Abstract:
Program specific information (PSI) is formed suitable for use in recovering data content of a program in the form of a packetized datastream. Packet identifiers (PIDs) that identify individual packetized datastreams constituting the program are renumbered and corresponding packetized datastreams that constitute different programs are given the same PID. A program map table (PMT) is created that associates the renumbered PIDs with the individual packetized datastreams constituting the program. A program association table (PAT) is also created for associating the program with PIDs that identify packets comprising the PMT. A parameter may be employed within the PSI to indicate that the PSI is to be applied in subsequent processing of the program irrespective of a substantive difference between the PSI and previous PSI content. In addition, the PSI may incorporate a version number that is varied between successive occurrences of the PSI irrespective of substantive change in PSI content. One or more private data elements may also be included in the PMT to describe the program.
Abstract:
A storage medium format for a storage medium containing packetized data programs includes packet identifiers (PIDs) that identify individual packetized datastreams constituting a program. The data format facilitates the association and assembly of the packetized datastreams of the program by a decoder, independent of PID de-mapping data. The PIDs include a base PID for identifying one datastream and a second PID of predetermined offset value to the base PID for identifying a second datastream. Corresponding packetized datastreams that constitute different programs are given the same PID. The storage medium format may also include program specific information (PSI) suitable for use in recovering data content of a program. The PSI includes an MPEG-like program map table (PMT) and an MPEG-like program association table (PAT) and incorporates a parameter suitable for commanding a decoder to apply the PSI in decoding the program irrespective of previous PSI content. In addition, the PSI may incorporate a version number that is varied between successive occurrences of the PSI irrespective of substantive change in PSI content. One or more private data elements may also be included in the PMT to describe the program.