摘要:
Embodiments of the invention generally provide methods for etching a substrate. In one embodiment, the method includes determining a substrate temperature target profile that corresponds to a uniform deposition rate of etch by-products on a substrate, preferentially regulating a temperature of a first portion of a substrate support relative to a second portion of the substrate support to obtain the substrate temperature target profile on the substrate, and etching the substrate on the preferentially regulated substrate support. In another embodiment, the method includes providing a substrate in a processing chamber having a selectable distribution of species within the processing chamber and a substrate support with lateral temperature control, wherein a temperature profile induced by the substrate support and a selection of species distribution comprise a control parameter set, etching a first layer of material and etching a second layer of material respectively using different control parameter sets.
摘要:
Embodiments of the invention generally provide methods for etching a substrate. In one embodiment, the method includes determining a substrate temperature target profile that corresponds to a uniform deposition rate of etch by-products on a substrate, preferentially regulating a temperature of a first portion of a substrate support relative to a second portion of the substrate support to obtain the substrate temperature target profile on the substrate, and etching the substrate on the preferentially regulated substrate support. In another embodiment, the method includes providing a substrate in a processing chamber having a selectable distribution of species within the processing chamber and a substrate support with lateral temperature control, wherein a temperature profile induced by the substrate support and a selection of species distribution comprise a control parameter set, etching a first layer of material and etching a second layer of material respectively using different control parameter sets.
摘要:
A pedestal assembly and method for controlling temperature of a substrate during processing is provided. In one embodiment, the pedestal assembly includes an electrostatic chuck coupled to a metallic base. The electrostatic chuck includes at least one chucking electrode and metallic base includes at least two fluidly isolated conduit loops disposed therein. In another embodiment, the pedestal assembly includes a support member that is coupled to a base by a material layer. The material layer has at least two regions having different coefficients of thermal conductivity. In another embodiment, the support member is an electrostatic chuck. In further embodiments, a pedestal assembly has channels formed between the base and support member for providing cooling gas in proximity to the material layer to further control heat transfer between the support member and the base, thereby controlling the temperature profile of a substrate disposed on the support member.
摘要:
A pedestal assembly and method for controlling temperature of a substrate during processing is provided. In one embodiment, the pedestal assembly includes an electrostatic chuck coupled to a metallic base. The electrostatic chuck includes at least one chucking electrode and metallic base includes at least two fluidly isolated conduit loops disposed therein. In another embodiment, the pedestal assembly includes a support member that is coupled to a base by a material layer. The material layer has at least two regions having different coefficients of thermal conductivity. In another embodiment, the support member is an electrostatic chuck. In further embodiments, a pedestal assembly has channels formed between the base and support member for providing cooling gas in proximity to the material layer to further control heat transfer between the support member and the base, thereby controlling the temperature profile of a substrate disposed on the support member.
摘要:
Embodiments of the invention include methods for in-situ chamber dry cleaning a plasma processing chamber utilized for gate structure fabrication process in semiconductor devices. In one embodiment, a method for in-situ chamber dry clean includes supplying a first cleaning gas including at least a boron containing gas into a processing chamber in absence of a substrate disposed therein, supplying a second cleaning gas including at least a halogen containing gas into the processing chamber in absence of the substrate, and supplying a third cleaning gas including at least an oxygen containing gas into the processing chamber in absence of the substrate.
摘要:
An apparatus having a multiple gas injection port system for providing a high uniform etching rate across the substrate is provided. In one embodiment, the apparatus includes a nozzle in the semiconductor processing apparatus having a hollow cylindrical body having a first outer diameter defining a hollow cylindrical sleeve and a second outer diameter defining a tip, a longitudinal passage formed longitudinally through the body of the hollow cylindrical sleeve and at least partially extending to the tip, and a lateral passage formed in the tip coupled to the longitudinal passage, the lateral passage extending outward from the longitudinal passage having an opening formed on an outer surface of the tip.
摘要:
A two-step method of etching an organic coating layer, in particular, an organic antireflection coating (ARC) layer, is disclosed. During the main etch step, the organic coating layer is etched using a plasma generated from a first source gas which includes a fluorocarbon and a non-carbon-containing, halogen-comprising gas. Etching is performed using a first substrate bias power. During the overetch step, residual organic coating material remaining after the main etch step is removed by exposing the substrate to a plasma generated from a second source gas which includes a chlorine-containing gas and an oxygen-containing gas, and which does not include a polymer-forming gas. The overetch step is performed using a second substrate bias power which is less than the first substrate bias power. The first source gas and first substrate bias power provide a higher etch rate in dense feature areas than in isolated feature areas during the main etch step, whereas the second source gas and second substrate bias power provide a higher etch rate in isolated feature areas than in dense feature areas during the overetch step, resulting in an overall balancing effect.
摘要:
Embodiments of the invention include methods for in-situ chamber dry cleaning a plasma processing chamber utilized for gate structure fabrication process in semiconductor devices. In one embodiment, a method for in-situ chamber dry clean includes supplying a first cleaning gas including at least a boron containing gas into a processing chamber in absence of a substrate disposed therein, supplying a second cleaning gas including at least a halogen containing gas into the processing chamber in absence of the substrate, and supplying a third cleaning gas including at least an oxygen containing gas into the processing chamber in absence of the substrate.
摘要:
Methods for fabricating a semiconductor device having a lanthanum-family-based oxide layer are described. A gate stack having a lanthanum-family-based oxide layer is provided above a substrate. At least a portion of the lanthanum-family-based oxide layer is modified to form a lanthanum-family-based halide portion. The lanthanum-family-based halide portion is removed with a water vapor treatment.
摘要:
Wafers having a high K dielectric layer and an oxide or nitride containing layer are etched in an inductively coupled plasma processing chamber by applying a source power to generate an inductively coupled plasma, introducing into the chamber a gas including BCl3, setting the temperature of the wafer to be between 100° C. and 350° C., and etching the wafer with a selectivity of high K dielectric to oxide or nitride greater than 10:1. Wafers having an oxide layer and a nitride layer are etched in a reactive ion etch processing chamber by applying a bias power to the wafer, introducing into the chamber a gas including BCl3, setting the temperature of the wafer to be between 20° C. and 200° C., and etching the wafer with an oxide to nitride selectivity greater than 10:1. Wafers having an oxide layer and a nitride layer are etched in a an inductively coupled plasma processing chamber by applying a bias power to the wafer, applying a source power to generate an inductively coupled plasma, introducing into the chamber a gas including BCl3, setting the temperature of the wafer to be between 20° C. and 200° C., and etching the wafer with an oxide to nitride selectivity greater than 10:1.