摘要:
Wafers having a high K dielectric layer and an oxide or nitride containing layer are etched in an inductively coupled plasma processing chamber by applying a source power to generate an inductively coupled plasma, introducing into the chamber a gas including BCl3, setting the temperature of the wafer to be between 100° C. and 350° C., and etching the wafer with a selectivity of high K dielectric to oxide or nitride greater than 10:1. Wafers having an oxide layer and a nitride layer are etched in a reactive ion etch processing chamber by applying a bias power to the wafer, introducing into the chamber a gas including BCl3, setting the temperature of the wafer to be between 20° C. and 200° C., and etching the wafer with an oxide to nitride selectivity greater than 10:1. Wafers having an oxide layer and a nitride layer are etched in a an inductively coupled plasma processing chamber by applying a bias power to the wafer, applying a source power to generate an inductively coupled plasma, introducing into the chamber a gas including BCl3, setting the temperature of the wafer to be between 20° C. and 200° C., and etching the wafer with an oxide to nitride selectivity greater than 10:1.
摘要:
Wafers having a high K dielectric layer and an oxide or nitride containing layer are etched in an inductively coupled plasma processing chamber by applying a source power to generate an inductively coupled plasma, introducing into the chamber a gas including BCl3, setting the temperature of the wafer to be between 100° C. and 350° C., and etching the wafer with a selectivity of high K dielectric to oxide or nitride greater than 10:1. Wafers having an oxide layer and a nitride layer are etched in a reactive ion etch processing chamber by applying a bias power to the wafer, introducing into the chamber a gas including BCl3, setting the temperature of the wafer to be between 20° C. and 200° C., and etching the wafer with an oxide to nitride selectivity greater than 10:1. Wafers having an oxide layer and a nitride layer are etched in a an inductively coupled plasma processing chamber by applying a bias power to the wafer, applying a source power to generate an inductively coupled plasma, introducing into the chamber a gas including BCl3, setting the temperature of the wafer to be between 20° C. and 200° C., and etching the wafer with an oxide to nitride selectivity greater than 10:1.
摘要:
Methods for fabricating one or more shallow trench isolation (STI) structures are provided herein. In some embodiments, a method for fabricating one or more shallow trench isolation (STI) structures may include providing a substrate having a patterned mask layer disposed thereon to define one or more STI structures. The substrate may be etched using a plasma formed from a process gas mixture to form one or more STI structures on the substrate, wherein the process gas mixture comprises a fluorine-containing gas and either a fluorocarbon-containing gas or a hydrofluorocarbon-containing gas.
摘要:
Methods for fabricating one or more shallow trench isolation (STI) structures are provided herein. In some embodiments, a method for fabricating one or more shallow trench isolation (STI) structures may include providing a substrate having a patterned mask layer disposed thereon to define one or more STI structures. The substrate may be etched using a plasma formed from a process gas mixture to form one or more STI structures on the substrate, wherein the process gas mixture comprises a fluorine-containing gas and either a fluorocarbon-containing gas or a hydrofluorocarbon-containing gas.
摘要:
A method of plasma etching tungsten silicide over polysilicon particularly useful in fabricating flash memory having both a densely packed area and an open (iso) area requiring a long over etch due to microloading. Wafer biasing is decreased in the over etch. The principal etchant include NF3 and Cl2. Argon is added to prevent undercutting at the dense/iso interface. Oxygen and nitrogen oxidize any exposed silicon to increase etch selectivity and straightens the etch profile. SiCl4 as an example of a silicon and chlorine containing passivating gas may be added for additional selectivity.
摘要:
A method of plasma etching tungsten silicide over polysilicon particularly useful in fabricating flash memory having both a densely packed area and an open (iso) area requiring a long over etch due to microloading. Wafer biasing is decreased in the over etch. The principal etchant include NF3 and Cl2. Argon is added to prevent undercutting at the dense/iso interface. Oxygen and nitrogen oxidize any exposed silicon to increase etch selectivity and straightens the etch profile. SiCl4 may be added for additional selectivity.
摘要:
Embodiments of the invention include methods for in-situ chamber dry cleaning a plasma processing chamber utilized for gate structure fabrication process in semiconductor devices. In one embodiment, a method for in-situ chamber dry clean includes supplying a first cleaning gas including at least a boron containing gas into a processing chamber in absence of a substrate disposed therein, supplying a second cleaning gas including at least a halogen containing gas into the processing chamber in absence of the substrate, and supplying a third cleaning gas including at least an oxygen containing gas into the processing chamber in absence of the substrate.
摘要:
An apparatus having a multiple gas injection port system for providing a high uniform etching rate across the substrate is provided. In one embodiment, the apparatus includes a nozzle in the semiconductor processing apparatus having a hollow cylindrical body having a first outer diameter defining a hollow cylindrical sleeve and a second outer diameter defining a tip, a longitudinal passage formed longitudinally through the body of the hollow cylindrical sleeve and at least partially extending to the tip, and a lateral passage formed in the tip coupled to the longitudinal passage, the lateral passage extending outward from the longitudinal passage having an opening formed on an outer surface of the tip.
摘要:
A two-step method of etching an organic coating layer, in particular, an organic antireflection coating (ARC) layer, is disclosed. During the main etch step, the organic coating layer is etched using a plasma generated from a first source gas which includes a fluorocarbon and a non-carbon-containing, halogen-comprising gas. Etching is performed using a first substrate bias power. During the overetch step, residual organic coating material remaining after the main etch step is removed by exposing the substrate to a plasma generated from a second source gas which includes a chlorine-containing gas and an oxygen-containing gas, and which does not include a polymer-forming gas. The overetch step is performed using a second substrate bias power which is less than the first substrate bias power. The first source gas and first substrate bias power provide a higher etch rate in dense feature areas than in isolated feature areas during the main etch step, whereas the second source gas and second substrate bias power provide a higher etch rate in isolated feature areas than in dense feature areas during the overetch step, resulting in an overall balancing effect.
摘要:
Embodiments of the invention include methods for in-situ chamber dry cleaning a plasma processing chamber utilized for gate structure fabrication process in semiconductor devices. In one embodiment, a method for in-situ chamber dry clean includes supplying a first cleaning gas including at least a boron containing gas into a processing chamber in absence of a substrate disposed therein, supplying a second cleaning gas including at least a halogen containing gas into the processing chamber in absence of the substrate, and supplying a third cleaning gas including at least an oxygen containing gas into the processing chamber in absence of the substrate.