Abstract:
A system for automatically processing blood components is described. The system includes a console, which contains all motors, pumps, sensors, valves and control circuitry, and a unique disposable set that includes a cassette supporting a centrifuge with an improved design, pump interfaces with an improved design, component and solution bags, and tubing. Various processes are implemented using a specific disposable set for each process which allows automatic identification of the process to be performed the console.
Abstract:
A system for automatically collecting and separating whole blood into its components is described. The system includes a console, which contains all motors, pumps, sensors, valves and control circuitry, and a unique disposable set that includes a cassette supporting a centrifuge with an improved design, pump interfaces with an improved design, component and solution bags, and tubing. Various processes are implemented using a specific disposable set for each process which allows automatic identification of the process to be performed the console.
Abstract:
A handheld computer includes a processor; a memory in communication with the processor; and at least one light-emitting device that emits visible light as a visual indicator of an occurrence of a designated event. The processor is programmed to selectively activate the visual indicator in response to an occurrence of a designated event to provide the visual indicator to a user of the handheld computer. The processor is programmed to monitor for occurrence of two or more different types of designated events. The processor varies the visual indicator based on the type of the event for which occurrence is being signaled by that visual indicator, such that a different visual indicator is associated with each type of event for which the processor is programmed to monitor.
Abstract:
Described herein is a continuous-flow centrifuge (CFC) which may be embodied in an automated system for collecting and separating whole blood into its components. The collection and separation system includes a console and a disposable set. Various blood processing procedures which produce specific blood products may be implemented by using a specific disposable set for each process. The disposable set may include a manifold, a CFC, and various components attached by tubing. These components may include one or more solution bags, blood product bags, bacterial filters, leukofilters, and a donor blood collection tube with access needle. The manifold and CFC disk may be included in a cassette that mounts onto the front panel of the console. The console may contain valve actuators, pressure transducers, ultrasonic sensors, a roller pump assembly, a CFC drive system, optical sensors, electronics, software, user interface components, a bar code reader and data acquisition components.
Abstract:
Described herein is a method and apparatus for collecting and separating whole blood into its components, including collecting an amount of plasma. The collection and separation system includes a console and a disposable set. The method may include processing the blood through the centrifuge, collecting the plasma, and returning red blood cells remaining in the centrifuge to the source. The disposable set may include a manifold, a CFC, and various components attached by tubing. These components may include one or more solution bags, blood product bags, bacterial filters, leukofilters, and a donor blood collection tube with access needle.
Abstract:
A method at the transmission and reception of electromagnetically generated and received pulses of ultrasound, especially at non-destructive testing of electrically conductive material.The method comprises the steps of in a transmitter generating a first magnetic field by means of a first coil and a magnet core and supplying a transmitter coil located in the first magnetic field with a transmission pulse of ultrasonic frequency, and in a receiver generating a second magnetic field by means of a second coil and magnet core and by means of a receiver coil located in the second magnetic field receiving a signal originating from said transmitted pulse. When testing in this way nonmagnetic material, the signal/noise ratio is low. The noise partially originates from generated ultrasound affecting the transmitter and receiver magnets.According to the invention, a first transmission pulse is caused to be transmitted and received while the current in said first coil (1) and said second coil (2) has the same or different direction, whereafter the received signal is stored in a memory (8) intended therefor, whereafter a second transmission pulse is caused to be transmitted and received while the current in said first coil (1) or said second coil (2) has reversed direction compared with the condition when the first transmission pulse was transmitted and received, whereafter the difference between the signal last received and said stored signal is formed.By the present invention, after said difference has been formed a signal substantially free of interference is received.The invention further comprises a device for carrying out said method.
Abstract:
A handheld computer includes a processor; a memory in communication with the processor; and at least one light-emitting device that emits visible light as a visual indicator of an occurrence of a designated event. The processor is programmed to selectively activate the visual indicator in response to an occurrence of a designated event to provide the visual indicator to a user of the handheld computer. The processor is programmed to monitor for occurrence of two or more different types of designated events. The processor varies the visual indicator based on the type of the event for which occurrence is being signaled by that visual indicator, such that a different visual indicator is associated with each type of event for which the processor is programmed to monitor.
Abstract:
The specification discloses a portable dialysis machine having a detachable controller unit and base unit. The controller unit includes a door having an interior face, a housing with a panel where the housing and panel define a recessed region configured to receive the interior face of the door, and a manifold receiver fixedly attached to the panel. The base unit has a planar surface for receiving a container of fluid, a scale integrated with the planar surface, a heater in thermal communication with the planar surface, and a sodium sensor in electromagnetic communication with the planar surface. Embodiments of the disclosed portable dialysis system have improved structural and functional features, including improved modularity, ease of use, and safety features.
Abstract:
An apparatus and method thereof wherein a portable computer system or personal digital assistant generates a visual signal in response to an occurrence of a programmed event. For example, the portable computer system can use a light emitting diode to visually signal an alarm at a specified time. The visual signal can be varied in order to indicate the type of event associated with the alarm. In one implementation, the visual signal blinks at a particular rate depending on the type of event. In another implementation, the visual signal blinks a prescribed number of times or according to a particular pattern depending on the type of event. When enabled, the visual signal is generated in lieu of an audible signal, thus providing to the user a silent alarm that does not disturb other people in proximity, such as in a meeting, a theater, or some other gathering.
Abstract:
An apparatus and method thereof wherein a portable computer system or personal digital assistant generates a visual signal in response to an occurrence of a programmed event. For example, the portable computer system can use a light emitting diode to visually signal an alarm at a specified time. The visual signal can be varied in order to indicate the type of event associated with the alarm. In one implementation, the visual signal blinks at a particular rate depending on the type of event. In another implementation, the visual signal blinks a prescribed number of times or according to a particular pattern depending on the type of event. When enabled, the visual signal is generated in lieu of an audible signal, thus providing to the user a silent alarm that does not disturb other people in proximity, such as in a meeting, a theater, or some other gathering.