摘要:
A method for delivering optical stimulation comprises transfecting a target tissue with a light-sensitive channel protein sensitive to light in a wavelength range, delivering light in the wavelength range to the target tissue via an optical stimulation device, substantially simultaneously with delivering light to the target tissue, sensing bioelectric signals, determining a patient therapeutic state based on the bioelectric signals, and adjusting the delivery of the light to the target tissue based on the sensed patient therapeutic state.
摘要:
Methods of delivering optical stimulation to a target tissue from an optical stimulation device are provided. One method comprises sensing a temperature at the optical stimulation device or proximate to the optical stimulation device, and adjusting the delivery of light to the target tissue based on the sensed temperature. Another method comprises delivering the light to the target tissue with an optical light guide and sensing bioelectric signals with a sense electrode, wherein the optical light guide and the sense electrode each comprise a material that produces substantially no induced current in an electromagnetic field. Another method comprises delivering light from a light source of an optical stimulation device to a window of the optical stimulation device, delivering the light from the window to an optical light guide optically connected to the window, and delivering the light to a target tissue via the optical light guide.
摘要:
Methods of delivering optical stimulation to a target tissue from an optical stimulation device are provided. One method comprises sensing a temperature at the optical stimulation device or proximate to the optical stimulation device, and adjusting the delivery of light to the target tissue based on the sensed temperature. Another method comprises delivering the light to the target tissue with an optical light guide and sensing bioelectric signals with a sense electrode, wherein the optical light guide and the sense electrode each comprise a material that produces substantially no induced current in an electromagnetic field. Another method comprises delivering light from a light source of an optical stimulation device to a window of the optical stimulation device, delivering the light from the window to an optical light guide optically connected to the window, and delivering the light to a target tissue via the optical light guide.
摘要:
A battery cell is presented. The battery cell includes an anode, a cathode spaced from and operatively associated with the anode, an electrolyte operatively associated with the anode and the cathode. A layered separator includes a plurality of separator material layers disposed between the anode and cathode. The plurality of separator material layers includes a first layer and a second layer. The first layer is characterized by a first value of a physical property and the second layer is characterized by a second value of the physical property.
摘要:
The invention is directed to designs for capacitors of implantable medical devices (IMDs) such as implantable defibrillators, implantable cardioverter-defibrillators, implantable pacemaker-cardioverter-defibrillators, and the like. The capacitor designs can reduce capacitor volume significantly and may also improve charge holding capacity relative to conventional capacitor designs. Moreover, since capacitors typically comprise a significant portion of the volume of an IMD, significant reductions in capacitor volume can likewise significantly reduce the size of the IMD.
摘要:
The invention is directed to designs for capacitors of implantable medical devices (IMDs) such as implantable defibrillators, implantable cardioverter-defibrillators, implantable pacemaker-cardioverter-defibrillators, and the like. The capacitor designs can reduce capacitor volume significantly and may also improve charge holding capacity relative to conventional capacitor designs. Moreover, since capacitors typically comprise a significant portion of the volume of an IMD, significant reductions in capacitor volume can likewise significantly reduce the size of the IMD.
摘要:
A capacitor for use in implantable medical devices (IMDs) such as implantable defibrillators, implantable cardioverter-defibrillators, implantable pacemaker-cardioverter-defibrillators, and the like stores charge for use in the delivery of high voltage electrical therapy. The capacitor design can reduce capacitor volume significantly and may also improve charge holding capacity relative to conventional capacitor designs. Moreover, since capacitors typically comprise a significant portion of the volume of an IMD, significant reductions in capacitor volume can likewise significantly reduce the size of the IMD.
摘要:
The present invention relates generally to capacitor cells and the utilization of separator materials that interact with one or more surfactants in such cells. More specifically, the present invention is related to capacitor cells that include separators that are impregnated with a surfactant or that absorb and/or interact with a surfactant that is included in an electrolyte placed within the capacitor cell.
摘要:
A method including printing a layer of an electrode on a substrate is described. Printing the layer may include ejecting a first coating composition and a second coating composition from a nozzle. The first coating composition may comprise at least a first coating material and the second coating composition may comprise at least a second coating material. The first coating composition and the second coating composition are introduced over the substrate. An electrode comprising a layer printed on a substrate wherein the layer comprises a first coating material and a second coating material is also described.
摘要:
The present invention relates generally to capacitor cells and the utilization of separator materials that interact with one or more surfactants in such cells. More specifically, the present invention is related to capacitor cells that include separators that are impregnated with a surfactant or that absorb and/or interact with a surfactant that is included in an electrolyte placed within the capacitor cell.