Abstract:
Disclosed is a method, computer method, system, and apparatus for measuring two-dimensional distributions of optical emissions from a plasma in a semiconductor plasma processing chamber. The acquired two-dimensional distributions of plasma optical emissions can be used to infer the two-dimensional distributions of concentrations of certain chemical species of interest that are present in the plasma, and thus provide a useful tool for process development and also for new and improved processing tool development. The disclosed technique is computationally simple and inexpensive, and involves the use of an expansion of the assumed optical intensity distribution into a sum of basis functions that allow for circumferential variation of optical intensity. An example of suitable basis functions are Zernike polynomials.
Abstract:
An apparatus for in-situ etching monitoring in a plasma processing chamber includes a continuous wave broadband light source, an illumination system configured to illuminate an area on a substrate with an incident light beam being directed from the continuous wave broadband light source at normal incidence to the substrate, a collection system configured to collect a reflected light beam being reflected from the illuminated area on the substrate, and to direct the reflected light beam to a first light detector, and a controller. The controller is configured to determine a property of the substrate or structures formed thereupon based on a reference light beam and the reflected light beam, and control an etch process based on the determined property. The reference light beam is generated by the illumination system by splitting a portion of the incident light beam and directed to a second light detector.
Abstract:
An apparatus and a method for in-situ phase determination are provided. The apparatus includes a measurement chamber configured to retain a substance, and an entrance window mounted on a side of the measurement chamber. An exit window is mounted on an opposite side of the measurement chamber, and the exit window is parallel with the entrance window. The apparatus further includes a light source configured to generate an incident light beam. The incident light beam is directed to the entrance window at a non-zero angle of incidence with respect to a normal of the entrance window. The incident light beam passes through the entrance window, the measurement chamber and the exit window to form an output light beam. A detector is positioned under the exit window and configured to collect the output light beam passing through the exit window and generate measurement data.