Abstract:
Disclosed is a liquid coating method. The method executes processes of: coating a coating liquid in a spiral form on a surface of a substrate by ejecting the coating liquid from the ejection nozzle while moving the ejection nozzle in a predetermined direction between the rotary axis and a peripheral edge of the substrate during rotation of the substrate; making a linear velocity at an ejection position of the coating liquid from the ejection nozzle substantially constant by reducing a number of rotations of the substrate as the ejection position is positioned closer to the peripheral edge of the substrate; and making an ejection flow rate of the coating liquid ejected from the ejection nozzle substantially constant by changing a gap between the ejection port of the ejection nozzle and the surface of the substrate based on a flow rate of the coating liquid before ejection from the ejection nozzle.
Abstract:
There is provided a periphery coating method of coating a coating liquid on a periphery region of a substrate. The method includes performing a scan-in process of moving the coating liquid nozzle from an outside of an edge of the substrate to a position above the periphery region of the substrate while rotating the substrate and discharging the coating liquid from the coating liquid nozzle; and performing a scan-out process of moving the coating liquid nozzle from the position above the periphery region of the substrate to the outside of the edge of the substrate while rotating the substrate and discharging the coating liquid from the coating liquid nozzle. Further, in the scan-out process, the coating liquid nozzle is moved at a speed lower than a speed at which the coating liquid is moved to a side of an edge of the substrate.
Abstract:
A periphery coating unit performs a scan-in process of moving a resist liquid nozzle 27 from an outside of an edge Wb of a wafer W to a position above a periphery region Wc of the wafer W while rotating the wafer W and discharging a resist liquid from the resist liquid nozzle 27; and a scan-out process of moving the resist liquid nozzle 27 from the position above the periphery region Wc of the wafer W to the outside of the edge Wb of the wafer W while rotating the wafer W and discharging the resist liquid from the resist liquid nozzle 27. Further, in the scan-out process, the resist liquid nozzle 27 is moved at a speed v2 lower than a speed v3 at which the resist liquid is moved to a side of the edge Wb of the wafer W.
Abstract:
Disclosed is a liquid coating method. The method executes processes of: coating a coating liquid in a spiral form on a surface of a substrate by ejecting the coating liquid from the ejection nozzle while moving the ejection nozzle in a predetermined direction between the rotary axis and a peripheral edge of the substrate during rotation of the substrate; making a linear velocity at an ejection position of the coating liquid from the ejection nozzle substantially constant by reducing a number of rotations of the substrate as the ejection position is positioned closer to the peripheral edge of the substrate; and making an ejection flow rate of the coating liquid ejected from the ejection nozzle substantially constant by changing a gap between the ejection port of the ejection nozzle and the surface of the substrate based on a flow rate of the coating liquid before ejection from the ejection nozzle.
Abstract:
There is provided a periphery coating method of coating a coating liquid on a periphery region of a substrate. The method includes performing a scan-in process of moving the coating liquid nozzle from an outside of an edge of the substrate to a position above the periphery region of the substrate while rotating the substrate and discharging the coating liquid from the coating liquid nozzle; and performing a scan-out process of moving the coating liquid nozzle from the position above the periphery region of the substrate to the outside of the edge of the substrate while rotating the substrate and discharging the coating liquid from the coating liquid nozzle. Further, in the scan-out process, the coating liquid nozzle is moved at a speed lower than a speed at which the coating liquid is moved to a side of an edge of the substrate.
Abstract:
A periphery coating unit performs a scan-in process of moving a resist liquid nozzle 27 from an outside of an edge Wb of a wafer W to a position above a periphery region Wc of the wafer W while rotating the wafer W and discharging a resist liquid from the resist liquid nozzle 27; and a scan-out process of moving the resist liquid nozzle 27 from the position above the periphery region Wc of the wafer W to the outside of the edge Wb of the wafer W while rotating the wafer W and discharging the resist liquid from the resist liquid nozzle 27. Further, in the scan-out process, the resist liquid nozzle 27 is moved at a speed v2 lower than a speed v3 at which the resist liquid is moved to a side of the edge Wb of the wafer W.