Abstract:
A stage includes a first member made of a material having a density of 5.0 g/cm3 or less, and a second member joined to the first member. The second member is made of a material having a linear expansion coefficient of 5.0×10−6/K or less and a thermal conductivity of 100 W/mK or more. A flow passage for a temperature control medium is formed in at least one of the first member and the second member.
Abstract:
A plasma etching method includes a plasma process of plasma-processing a surface of a photoresist, which has a predetermined pattern with plasma generated from a hydrogen-containing gas. Further, the plasma etching method includes an etching process of etching a silicon-containing film with plasma generated from a CF-based gas and a gas containing a CHF-based gas by using the plasma-processed photoresist as a mask. Furthermore, in the plasma etching method, the plasma process and the etching process are repeated at least two or more times.
Abstract:
Disclosed is a liquid coating method. The method executes processes of: coating a coating liquid in a spiral form on a surface of a substrate by ejecting the coating liquid from the ejection nozzle while moving the ejection nozzle in a predetermined direction between the rotary axis and a peripheral edge of the substrate during rotation of the substrate; making a linear velocity at an ejection position of the coating liquid from the ejection nozzle substantially constant by reducing a number of rotations of the substrate as the ejection position is positioned closer to the peripheral edge of the substrate; and making an ejection flow rate of the coating liquid ejected from the ejection nozzle substantially constant by changing a gap between the ejection port of the ejection nozzle and the surface of the substrate based on a flow rate of the coating liquid before ejection from the ejection nozzle.
Abstract:
A film forming apparatus is disclosed. The apparatus comprises a chamber; an exhaust unit configured to reduce the pressure in the chamber to a predetermined vacuum level; a holder disposed in the chamber and configured to hold a film forming target member on which a film is to be formed; a supply unit configured to supply a film forming material containing silicon to a surface of the film forming target member; and a heat source configured to perform heating at the predetermined vacuum level to melt the supplied film forming material.
Abstract:
A bonding apparatus includes a first holder configured to hold a first substrate divided into multiple chips with a tape and a ring frame therebetween, the first substrate being attached to the tape, and an edge of the tape being attached to the ring frame; a second holder configured to hold a second substrate, which is disposed on an opposite side to the tape with respect to the first substrate therebetween, while maintaining a distance from the first substrate; and a pressing device configured to press the multiple chips one by one with the tape therebetween to press and bond the corresponding chip to the second substrate.
Abstract:
A substrate processing method of processing a substrate includes: forming a modification layer at least on a surface layer of a rear surface of the substrate or within the substrate by radiating a laser beam; and processing a front surface of the substrate in a state that the rear surface of the substrate is held. A modification device includes a laser irradiation unit configured to form a modification layer at least on a surface layer of the rear surface of the substrate or within the substrate by radiating a laser beam.
Abstract:
A coating apparatus includes a nozzle, a moving mechanism, a pressure adjusting unit and a pressure control unit. The nozzle is provided with a storage chamber and a slit-like flow path, and configured to discharge the coating liquid from a discharge port formed at a front end of the flow path. The moving mechanism moves the nozzle and a substrate relatively to each other along the surface of the substrate. The pressure adjusting unit adjusts the pressure inside the storage chamber. The pressure control unit controls the pressure adjusting unit so as to adjust pressure inside the storage chamber. The pressure control unit controls the pressure adjusting unit such that the inside of the storage chamber becomes a negative pressure, and fills the coating liquid inside the storage chamber while slowly decreasing the negative pressure inside the storage chamber.
Abstract:
A plasma etching method includes a plasma process of plasma-processing a surface of a photoresist, which has a predetermined pattern with plasma generated from a hydrogen-containing gas. Further, the plasma etching method includes an etching process of etching a silicon-containing film with plasma generated from a CF-based gas and a gas containing a CHF-based gas by using the plasma-processed photoresist as a mask. Furthermore, in the plasma etching method, the plasma process and the etching process are repeated at least two or more times.
Abstract:
A coating apparatus includes a nozzle, a moving mechanism, a pressure adjusting unit and a pressure control unit. The nozzle is provided with a storage chamber and a slit-like flow path, and configured to discharge the coating liquid from a discharge port formed at a front end of the flow path. The moving mechanism moves the nozzle and a substrate relatively to each other along the surface of the substrate. The pressure adjusting unit adjusts the pressure inside the storage chamber. The pressure control unit controls the pressure adjusting unit so as to adjust pressure inside the storage chamber. The pressure control unit controls the pressure adjusting unit such that the inside of the storage chamber becomes a negative pressure, and fills the coating liquid inside the storage chamber while slowly decreasing the negative pressure inside the storage chamber.
Abstract:
Disclosed is a coating apparatus capable of enhancing the film thickness uniformity. The coating apparatus includes a nozzle and a moving mechanism. The nozzle includes a storage chamber that stores a coating liquid and a slit-like flow path that is in communication with the storage chamber, and discharges the coating liquid through a discharge port formed at a front end of the flow path. The moving mechanism moves the nozzle and the substrate relatively to each other along a surface of the substrate. Also, in the flow path provided in the nozzle, flow resistance at the central portion in the longitudinal direction is larger than that at both end portions in the longitudinal direction.