Abstract:
A focus ring is disposed on a peripheral portion of a lower electrode that receives a substrate thereon in a process container so as to contact a member of the lower electrode. The focus ring includes a contact surface that contacts the member of the lower electrode and is made of any one of a silicon-containing material, alumina and quartz. At least one of the contact surface of the focus ring and a contact surface of the member of the lower electrode has surface roughness of 0.1 micrometers or more.
Abstract:
A substrate support is provided that includes: a base; an electrostatic chuck on which a substrate is placed; an electrode provided in the electrostatic chuck; a contact portion of the electrode; an adhesive layer that bonds the electrostatic chuck with the base and that does not cover the contact portion; and a power supply terminal contacting the contact portion of the electrode without being fixed to the contact portion.
Abstract:
An electrostatic chucking method uses a substrate processing apparatus including an electrostatic chuck, a focus ring, a supply unit configured to supply a heat transfer medium to a space formed between the focus ring and the electrostatic chuck, and a plurality of electrodes provided at a region in the electrostatic chuck which corresponds to the focus ring. The electrostatic chucking method includes supplying by the supply unit the heat transfer medium to the space for a plasma processing period for which a plasma for processing the substrate is generated, and applying different voltages to the plurality of electrodes to attract and hold the focus ring on the electrostatic chuck for a period other than the plasma processing period.
Abstract:
A focus ring is disposed on a peripheral portion of a lower electrode that receives a substrate thereon in a process container so as to contact a member of the lower electrode. The focus ring includes a contact surface that contacts the member of the lower electrode and is made of any one of a silicon-containing material, alumina and quartz. At least one of the contact surface of the focus ring and a contact surface of the member of the lower electrode has surface roughness of 0.1 micrometers or more.
Abstract:
A mounting table includes a base and an electrostatic chuck provided on the base. The base has first and second top surface on which the electrostatic chuck and a focus ring are respectively provided. The second top surface is provided below the first top surface. A coolant path in the base has central and peripheral paths extending below the first and second top surfaces, respectively. The peripheral path has a portion extending along a side surface toward the first top surface. The mounting surface has central and peripheral regions. The mounting surface has protrusions formed in a dot shape. The protrusions are formed such that a contact area between the protrusions of the peripheral region and the backside of an object per unit area becomes greater than a contact area between the protrusions of the central region and the backside of the object per unit area.
Abstract:
An edge ring to be disposed to encircle a substrate is provided. The edge ring includes a bottom used to define vertical heights that are from points on the circumference of a virtual circle, to the bottom of the edge ring, the virtual circle having a radius from a first point that is placed on a central axis of the edge ring, the first point being defined as the center of the virtual circle, the radius being half of a diameter ranging from an inner diameter to an outer diameter of the edge ring, and an absolute value indicative of a difference between a maximum value and a minimum value for the vertical heights being set to be less than or equal to a preset upper limit.
Abstract:
An electrostatic chucking method uses a substrate processing apparatus including an electrostatic chuck, a focus ring, a supply unit configured to supply a heat transfer medium to a space formed between the focus ring and the electrostatic chuck, and a plurality of electrodes provided at a region in the electrostatic chuck which corresponds to the focus ring. The electrostatic chucking method includes supplying by the supply unit the heat transfer medium to the space for a plasma processing period for which a plasma for processing the substrate is generated, and applying different voltages to the plurality of electrodes to attract and hold the focus ring on the electrostatic chuck for a period other than the plasma processing period.
Abstract:
An electrostatic chucking method uses a substrate processing apparatus including an electrostatic chuck, a focus ring, a supply unit configured to supply a heat transfer medium to a space formed between the focus ring and the electrostatic chuck, and a plurality of electrodes provided at a region in the electrostatic chuck which corresponds to the focus ring. The electrostatic chucking method includes supplying by the supply unit the heat transfer medium to the space for a plasma processing period for which a plasma for processing the substrate is generated, and applying different voltages to the plurality of electrodes to attract and hold the focus ring on the electrostatic chuck for a period other than the plasma processing period.