摘要:
A liquid crystal display includes a first substrate made up of a plastic substrate on which a first electrode for driving liquid crystal is formed, a second substrate made up of a plastic substrate on which a second electrode for driving liquid crystal is formed, and a liquid crystal layer held between the first and second substrates. At least one of the first and second substrates is a plastic substrate. The first and second substrate are glued together, and then the glued substrates are cut out into panels employing laser cutting. An opening for passing through either the first or second substrate is formed on a portion serving as a liquid crystal inlet prior to gluing the first and second substrates, and a notched portion in which at least a part of the opening is employed, is formed on a portion serving as the liquid crystal inlet of the panel.
摘要:
The present invention relates to a method for manufacturing a thin film device. The thin film device is manufactured by bonding a second substrate (106) to a thin film device layer (103) provided on a protective layer (102) formed on a first substrate (101) through a first adhesive layer (105), then, completely or partly removing the first substrate (101) in accordance with a process including at least one process of a chemical process and a mechanical polishing process, bonding a third substrate (109) to the exposed protective layer (102) or the protective layer (102) covered with the partly removed first substrate (101) through a second adhesive layer (108) and separating or removing the second substrate (106). Thus, the thin film device suitable for a light and thin display panel is manufactured without deteriorating a ruggedness.
摘要:
A difference in brightness between a portion, at which fiber overlaps, and any other portion of a plastic substrate in which a fiber cloth is contained is eliminated by setting the axis of the fiber and the optical axis of a polarizing plate so as to be coaxial with each other. Thereby, a normal displaying can be effected. In a liquid crystal display apparatus wherein a liquid crystal driving electrode (not shown) is formed on at least one of an active substrate 11 and an opposing substrate 12 in pair opposing to each other and liquid crystal (liquid crystal layer 13) is encapsulated in a space formed between the substrates, at least one of the pair of substrates, for example, the active substrate 11, is a resin substrate which contains a fiber cloth 16, and, first, second polarizing plates 14, 15 are provided on the outer side of at least one of the pair of substrates, for example, on the opposite sides, and besides an axis of the fiber cloth 16 and an optical axis of the first polarizing plate 14 are coaxial with each other.
摘要:
The present invention relates to a method for manufacturing a thin film device. The thin film device is manufactured by bonding a second substrate (106) to a thin film device layer (103) provided on a protective layer (102) formed on a first substrate (101) through a first adhesive layer (105), then, completely or partly removing the first substrate (101) in accordance with a process including at least one process of a chemical process and a mechanical polishing process, bonding a third substrate (109) to the exposed protective layer (102) or the protective layer (102) covered with the partly removed first substrate (101) through a second adhesive layer (108) and separating or removing the second substrate (106). Thus, the thin film device suitable for a light and thin display panel is manufactured without deteriorating a ruggedness.
摘要:
The present invention relates to a method for manufacturing a thin film device. The thin film device is manufactured by bonding a second substrate (106) to a thin film device layer (103) provided on a protective layer (102) formed on a first substrate (101) through a first adhesive layer (105), then, completely or partly removing the first substrate (101) in accordance with a process including at least one process of a chemical process and a mechanical polishing process, bonding a third substrate (109) to the exposed protective layer (102) or the protective layer (102) covered with the partly removed first substrate (101) through a second adhesive layer (108) and separating or removing the second substrate (106). Thus, the thin film device suitable for a light and thin display panel is manufactured without deteriorating a ruggedness.
摘要:
A thin-film device is fabricated by forming a protective layer and a thin-film device layer one by one on a first substrate and bonding a second substrate on the thin-film device layer via a first adhesive layer or a coating layer and first adhesive layer, removing the first substrate at least in a part thereof by etching with a chemical solution, bonding the protective layer, which covers the thin-film device layer on a side of the first substrate, to a third substrate via a second adhesive layer, and removing the second substrate. The protective layer is formed of at least two layers having resistance to the chemical solution used upon removal of the first substrate.
摘要:
A thin-film device is fabricated by forming a protective layer and a thin-film device layer one by one on a first substrate and bonding a second substrate on the thin-film device layer via a first adhesive layer or a coating layer and first adhesive layer, removing the first substrate at least in a part thereof by etching with a chemical solution, bonding the protective layer, which covers the thin-film device layer on a side of the first substrate, to a third substrate via a second adhesive layer, and removing the second substrate. The protective layer is formed of at least two layers having resistance to the chemical solution used upon removal of the first substrate.
摘要:
The present invention relates to a method for manufacturing a thin film device. The thin film device is manufactured by bonding a second substrate (106) to a thin film device layer (103) provided on a protective layer (102) formed on a first substrate (101) through a first adhesive layer (105), then, completely or partly removing the first substrate (101) in accordance with a process including at least one process of a chemical process and a mechanical polishing process, bonding a third substrate (109) to the exposed protective layer (102) or the protective layer (102) covered with the partly removed first substrate (101) through a second adhesive layer (108) and separating or removing the second substrate (106). Thus, the thin film device suitable for a light and thin display panel is manufactured without deteriorating a ruggedness.
摘要:
The present invention relates to a method for manufacturing a thin film device. The thin film device is manufactured by bonding a second substrate (106) to a thin film device layer (103) provided on a protective layer (102) formed on a first substrate (101) through a first adhesive layer (105), then, completely or partly removing the first substrate (101) in accordance with a process including at least one process of a chemical process and a mechanical polishing process, bonding a third substrate (109) to the exposed protective layer (102) or the protective layer (102) covered with the partly removed first substrate (101) through a second adhesive layer (108) and separating or removing the second substrate (106). Thus, the thin film device suitable for a light and thin display panel is manufactured without deteriorating a ruggedness.
摘要:
A laser annealing device (10) includes a laser oscillator (12), radiating a pulsed laser light beam of a preset period, and an illuminating optical system (15) for illuminating a pulsed laser light beam to an amorphous silicon film (1). The illuminating optical system (15) manages control for moving a laser spot so that a plural number of light pulses will be illuminated on the same location on the amorphous silicon film (1). The laser oscillator (12) radiates a laser light beam of a pulse generation period shorter than the reference period. The reference period is a time interval as from the radiation timing of illumination of a pulsed laser light beam on the surface of the film (1) until the timing of reversion of the substrate temperature raised due to the illumination of the laser light beam to the original substrate temperature.