Abstract:
An imaging apparatus includes a pixel unit, an amplifying transistor, and a control unit. The pixel unit includes a first photoelectric conversion unit generating a first charge based on incident light of a first color, a second photoelectric conversion unit generating a second charge based on incident light of the first color, and a third photoelectric conversion unit generating a third charge based on incident light of a second color. The amplifying transistor is provided in common to the first to third photoelectric conversion units, and outputs a signal based on the first, second, and third charges generated by the first, second, and third photoelectric conversion units, respectively. The control unit sets the pixel unit to a selected state or a non-selected state according to an electric potential of a control terminal of the amplifying transistor.
Abstract:
A solid-state image pickup apparatus includes a storage, first and second common lines, a first block line that is disposed between the storage and the first common line and receives a signal from an odd-numbered column, a second block line that is disposed between the storage and the second common line and receives a signal from an even-numbered column, first switches for controlling connections between the storage and the first block line, second switches for controlling connections between the storage and the second block line, first control lines for the first switches, second control lines for the second switches, a first lead line for transmitting a signal from the first block line to the first common line, a second lead line for transmitting a signal from the second block line to the second common line, and a scanning unit for supplying pulses to the first and second control lines.
Abstract:
An image pickup apparatus is provided with plural light receiving areas arranged two-dimensionally, and a vertical scanning circuit comprising plural unit circuit stages arranged in the vertical direction and a horizontal scanning circuit comprising plural unit circuit stages arranged in the horizontal direction, for selecting and reading the plural light receiving areas in succession. The vertical and horizontal scanning circuits are arranged in spaces between the light receiving areas. A crossing area of the vertical and horizontal scanning circuits, in a space between the light receiving areas, is divided into two areas. A unit circuit of the horizontal scanning circuit is provided in one of the two areas. A unit circuit of the vertical scanning circuit is provided in the other of the two areas. In one embodiment, the unit circuits of the vertical scanning circuit and/or of the horizontal scanning circuit are arranged at a constant pitch.
Abstract:
An image sensing apparatus comprising on a single semiconductor substrate: a pixel array; a vertical scanning unit; a horizontal scanning unit; a counter which starts a counting operation to count the number of the clocks before a start of the first period, and stops the counting operation before a start of the second period during the first period; and a generation unit which generates a first control signal for causing the vertical scanning unit to drive a pixel, the generation unit including a signal generation unit which generates a second control signal in accordance with the counted value output from the counter, and a delay unit which delays the second control signal to generate the first control signal and output the first control signal to the vertical scanning unit.
Abstract:
In an amplifying type MOS sensor having a 3-transistor construction, when a frame rate is raised, an accumulation time of a frame just after the switching of a drive mode becomes short. When a gain correction is made to compensate a lack of accumulation time, a deterioration in picture quality is caused. A read out scan and a reset scan are executed in parallel in the frame before the switching of the drive mode, thereby preventing that a time period for resetting a pixel is overlapped with a time period for holding a pixel signal into a holding unit.
Abstract:
An image sensing apparatus includes a pixel array including an optical black region and effective pixel region, and a scanning unit which scans the pixel array. The scanning unit includes a first shift register which scans the optical black region by a shift operation, and a second shift register which scans the effective pixel region by a shift operation. The second shift register starts the shift operation during a first period when the first shift register scans the optical black region, and scans a readout region serving as a partial region of the effective pixel region during a second period following the first period.
Abstract:
A solid-state image sensing device having an effective pixel area and an optical black area disposed on one principal surface of a substrate, includes photoelectric converter elements, a wiring part containing a plurality of wiring layers disposed on the one principal surface of the substrate, in which in the optical black area more wiring layers are disposed than in the effective pixel area, an interlayer dielectric disposed between, among the plurality of wiring layers, a topmost first wiring layer and a second wiring layer disposed beneath the first wiring layer, a passivation film disposed on the interlayer dielectric in the effective pixel area and disposed on the first wiring layer in the optical black area, and inner lenses disposed at least at positions on the passivation film that corresponds to the effective pixel area, a thickness of the passivation film being equal to or less than a thickness of the first wiring layer.
Abstract:
An image sensing apparatus comprising on a single semiconductor substrate: a pixel array; a vertical scanning unit; a horizontal scanning unit; a counter which starts a counting operation to count the number of the clocks before a start of the first period, and stops the counting operation before a start of the second period during the first period; and a generation unit which generates a first control signal for causing the vertical scanning unit to drive a pixel, the generation unit including a signal generation unit which generates a second control signal in accordance with the counted value output from the counter, and a delay unit which delays the second control signal to generate the first control signal and output the first control signal to the vertical scanning unit.
Abstract:
A solid-state image sensing device having an effective pixel area and an optical black area disposed on one principal surface of a substrate, includes photoelectric converter elements, a wiring part containing a plurality of wiring layers disposed on the one principal surface of the substrate, in which in the optical black area more wiring layers are disposed than in the effective pixel area, an interlayer dielectric disposed between, among the plurality of wiring layers, a topmost first wiring layer and a second wiring layer disposed beneath the first wiring layer, a passivation film disposed on the interlayer dielectric in the effective pixel area and disposed on the first wiring layer in the optical black area, and inner lenses disposed at least at positions on the passivation film that corresponds to the effective pixel area, a thickness of the passivation film being equal to or less than a thickness of the first wiring layer.
Abstract:
An image sensing apparatus has a plurality of pixels, and can output an image by converting its resolution by adding and reading out pixels for respective pixel groups each including a predetermined number of pixels of the plurality of pixels. Each pixel has a photoelectric conversion unit, an amplifier for amplifying and outputting a signal from the photoelectric conversion unit, and a capacitor connected to the output of the amplifier. The apparatus has a plurality of switches for commonly connecting between the capacitors of two or more pixels of the plurality of pixels.