摘要:
A high performance TMR sensor is fabricated by employing a composite inner pinned (AP1) layer in an AP2/Ru/AP1 pinned layer configuration. In one embodiment, there is a 10 to 80 Angstrom thick lower CoFeB or CoFeB alloy layer on the Ru coupling layer, a and 5 to 50 Angstrom thick Fe or Fe alloy layer on the CoFeB or CoFeB alloy, and a 5 to 30 Angstrom thick Co or Co rich alloy layer formed on the Fe or Fe alloy. A MR ratio of about 48% with a RA of
摘要:
A spin valve structure is disclosed in which an AP1 layer and/or free layer are made of a laminated Heusler alloy having Al or FeCo insertion layers. The ordering temperature of a Heusler alloy such as Co2MnSi is thereby lowered from about 350° C. to 280° C. which becomes practical for spintronics device applications. The insertion layer is 0.5 to 5 Angstroms thick and may also be Sn, Ge, Ga, Sb, or Cr. The AP1 layer or free layer can contain one or two additional FeCo layers to give a configuration represented by FeCo/[HA/IL]nHA, [HA/IL]nHA/FeCo, or FeCo/[HA/IL]nHA/FeCo where n is an integer≧1, HA is a Heusler alloy layer, and IL is an insertion layer. Optionally, a Heusler alloy insertion scheme is possible by doping Al or FeCo in the HA layer. For example, Co2MnSi may be co-sputtered with an Al or FeCo target or with a Co2MnAl or Co2FeSi target.
摘要翻译:公开了一种自旋阀结构,其中AP1层和/或自由层由具有Al或FeCo插入层的层状Heusler合金制成。 因此,Heusler合金(例如Co 2 MnSi)的排序温度从约350℃降低到280℃,这对于自旋电子器件应用是实用的。 插入层的厚度为0.5〜5埃,也可以是Sn,Ge,Ga,Sb或Cr。 AP1层或自由层可以含有一个或两个附加的FeCo层,以得到由FeCo / [HA / IL] N HA表示的构型,[HA / IL] N < HA / FeCo或FeCo / [HA / IL] N / HACo,其中n为整数> = 1,HA为Heusler合金层,IL为插入层。 任选地,通过在HA层中掺杂Al或FeCo,Heusler合金插入方案是可能的。 例如,Co 2 MnSi可以与Al或FeCo靶或与Co 2 N 2 MnAl或Co 2 FeSi靶共溅射。
摘要:
A TMR sensor, a CPP GMR sensor and a CCP CPP GMR sensor all include a tri-layered free layer that is of the form CoFe/CoFeB/NiFe, where the atom percentage of Fe can vary between 5% and 90% and the atom percentage of B can vary between 5% and 30%. The sensors also include SyAP pinned layers which, in the case of the GMR sensors include at least one layer of CoFe laminated onto a thin layer of Cu. In the CCP CPP sensor, a layer of oxidized aluminum containing segregated particles of copper is formed between the spacer layer and the free layer. All three configurations exhibit extremely good values of coercivity, areal resistance, GMR ratio and magnetostriction.
摘要:
A spin valve structure is disclosed in which an AP1 layer and/or free layer are made of a laminated Heusler alloy having Al or FeCo insertion layers. The ordering temperature of a Heusler alloy such as Co2MnSi is thereby lowered from about 350° C. to 280° C. which becomes practical for spintronics device applications. The insertion layer is 0.5 to 5 Angstroms thick and may also be Sn, Ge, Ga, Sb, or Cr. The AP1 layer or free layer can contain one or two additional FeCo layers to give a configuration represented by FeCo/[HA/IL]nHA, [HA/IL]nHA/FeCo, or FeCo/[HA/IL]nHA/FeCo where n is an integer ≧1, HA is a Heusler alloy layer, and IL is an insertion layer. Optionally, a Heusler alloy insertion scheme is possible by doping Al or FeCo in the HA layer. For example, Co2MnSi may be co-sputtered with an Al or FeCo target or with a Co2MnAl or Co2FeSi target.
摘要:
Improved magnetic devices have been fabricated by replacing the conventional seed layer (typically Ta) with a bilayer of Ru on Ta. Although both Ru and Ta layers are ultra thin (between 5 and 20 Angstroms), good exchange bias between the seed and the AFM layer (IrMn about 70 Angstroms thick) is retained. This arrangement facilitates minimum shield-to-shield spacing and gives excellent performance in CPP, CCP-CPP, or TMR configurations.
摘要:
A TMR sensor, a CPP GMR sensor and a CCP CPP GMR sensor all include a tri-layered free layer that is of the form CoFe/CoFeB/NiFe, where the atom percentage of Fe can vary between 5% and 90% and the atom percentage of B can vary between 5% and 30%. The sensors also include SyAP pinned layers which, in the case of the GMR sensors include at least one layer of CoFe laminated onto a thin layer of Cu. In the CCP CPP sensor, a layer of oxidized aluminum containing segregated particles of copper is formed between the spacer layer and the free layer. All three configurations exhibit extremely good values of coercivity, areal resistance, GMR ratio and magnetostriction.
摘要:
A high performance TMR sensor is fabricated by employing a composite inner pinned (AP1) layer in an AP2/Ru/AP1 pinned layer configuration. In one embodiment, there is a 10 to 80 Angstrom thick lower CoFeB or CoFeB alloy layer on the Ru coupling layer, a and 5 to 50 Angstrom thick Fe or Fe alloy layer on the CoFeB or CoFeB alloy, and a 5 to 30 Angstrom thick Co or Co rich alloy layer formed on the Fe or Fe alloy. A MR ratio of about 48% with a RA of
摘要:
A high performance TMR sensor is fabricated by incorporating a tunnel barrier having a Mg/MgO/Mg configuration. The 4 to 14 Angstroms thick lower Mg layer and 2 to 8 Angstroms thick upper Mg layer are deposited by a DC sputtering method while the MgO layer is formed by a NOX process involving oxygen pressure from 0.1 mTorr to 1 Torr for 15 to 300 seconds. NOX time and pressure may be varied to achieve a MR ratio of at least 34% and a RA value of 2.1 ohm-um2. The NOX process provides a more uniform MgO layer than sputtering methods. The second Mg layer is employed to prevent oxidation of an adjacent ferromagnetic layer. In a bottom spin valve configuration, a Ta/Ru seed layer, IrMn AFM layer, CoFe/Ru/CoFeB pinned layer, Mg/MgO/Mg barrier, CoFe/NiFe free layer, and a cap layer are sequentially formed on a bottom shield in a read head.
摘要:
A high performance TMR sensor is fabricated by incorporating a tunnel barrier having a Mg/MgO/Mg configuration. The 4 to 14 Angstroms thick lower Mg layer and 2 to 8 Angstroms thick upper Mg layer are deposited by a DC sputtering method while the MgO layer is formed by a NOX process involving oxygen pressure from 0.1 mTorr to 1 Torr for 15 to 300 seconds. NOX time and pressure may be varied to achieve a MR ratio of at least 34% and a RA value of 2.1 ohm-um2. The NOX process provides a more uniform MgO layer than sputtering methods. The second Mg layer is employed to prevent oxidation of an adjacent ferromagnetic layer. In a bottom spin valve configuration, a Ta/Ru seed layer, IrMn AFM layer, CoFe/Ru/CoFeB pinned layer, Mg/MgO/Mg barrier, CoFe/NiFe free layer, and a cap layer are sequentially formed on a bottom shield in a read head.
摘要:
Improved magnetic devices have been fabricated by replacing the conventional seed layer (typically Ta) with a bilayer of Ru on Ta. Although both Ru and Ta layers are ultra thin (between 5 and 20 Angstroms), good exchange bias between the seed and the AFM layer (IrMn about 70 Angstroms thick) is retained. This arrangement facilitates minimum shield-to-shield spacing and gives excellent performance in CPP, CCP-CPP, or TMR configurations.