Abstract:
The present invention provides a compressor in which an oil for application or that for assembly has non-compatibility with a refrigerant to be charged in a refrigerant circuit and an lubricating oil to be charged in the compressor has compatibility with the refrigerant.
Abstract:
Fibrous basic magnesium sulfate particles are continuously produced by the process comprising the following steps: (1) placing in a reaction vessel a seed particle-containing aqueous dispersion comprising fibrous basic magnesium sulfate seed particles dispersed in an aqueous medium; (2) supplying magnesium hydroxide and magnesium sulfate continuously into the reaction vessel under heating and stirring the seed particle-containing aqueous dispersion, whereby depositing basic magnesium sulfate produced by the reaction between the magnesium sulfate and magnesium hydroxide in the presence of water on the surfaces of the fibrous basic magnesium sulfate seed particles, to give an aqueous dispersion containing an increased amount of fibrous basic magnesium sulfate particles; (3) taking the aqueous dispersion obtained in the step (2) continuously out of the reaction vessel; and (4) recovering fibrous basic magnesium sulfate particles from the aqueous dispersion taken out of the reaction vessel.
Abstract:
The data of the partial images of an original output from an original input scanning device is converted by an image reducing section into reduced images of data in accordance with the size of duplication. Each reduced image of data is stored in a data storage. A pattern matching section compares adjoining reduced partial images of data as to the overlapping image data, to check the congruency therebetween. Based on this judgement result, an address setting section generates a joining position address corresponding to the joining position in each storage area. A data output control section loads the adjoining reduced partial images of data stored in respective storage areas, in a sequentially, joinable manner, so that an image forming section forms a duplicated image of the original on a predetermined recording medium in accordance with the reduced image data.
Abstract:
A core rod is inserted into a cladding pipe, moisture in a space between the core rod and the cladding pipe is removed, and an optical fiber is drawn while the space is connected to a dry-gas atmosphere and/or being decompressed and while the core rod and the cladding pipe are being unified with each other. Alternatively, the core rod is inserted into the cladding pipe, and an optical fiber is drawn from one end while moisture on the surface of the core rod and the internal surface of the cladding pipe is being removed. Accordingly, a high quality optical fiber is manufactured with good productivity.
Abstract:
The object of the present invention is to use the same FIFO line memory for both enlargement and reduction during variable-magnification processing in the scan direction, allowing reduction in circuit board area, reduction in power consumption, and reduction in cost, and to provide an image processing apparatus that allows variable-magnification processing to be carried out such that the speed of a scanning unit that captures image data during variable-magnification processing in the cross-scan direction is constant. During processing to enlarge an image in the scan direction, image data travels from CCD circuit board, passing through gate b of selector, is written to and read from FIFO memory, and from gate b of selector is written to memory provided at variable magnification unit. At variable magnification unit, image data is read from memory a plurality of times in correspondence to enlargement ratio, changing the magnification of the image data. Furthermore, image data is output through gate a of selector to LSU unit. During processing to reduce an image, image data travels from CCD circuit board, passing through gate a of selector, is input to variable magnification unit where it is subjected to variable-magnification processing, passes through gate a of selector, is written to and read from FIFO memory, passes through gate b of selector, and is output to LSU unit.
Abstract:
The present invention provide a compressor in which an oil for application or that for assembly has non-compatibility with a refrigerant to be charged in a refrigerant circuit and an lubricating oil to be charged in the compressor has compatibility with the refrigerant.
Abstract:
An object of the present invention is to provide a hydrogen separation material resistant to thermal shock, excellent in hydrogen separation characteristic and applicable to a hydrogen separation membrane, etc. and a manufacturing method thereof, as well as a hydrogen separation module and a hydrogen production apparatus comprising the same.In the hydrogen separation material, a silica glass membrane is formed on a porous support having a linear expansion coefficient of 2×10−6/K or less. The manufacturing method for the hydrogen separation material includes a porous support forming step of forming a porous support comprising porous silica glass and a silica glass membrane forming step of forming a silica glass membrane on the surface of the porous silica glass. The hydrogen separation module comprises the hydrogen separation material and a steam reforming catalyst. The hydrogen production apparatus comprises the hydrogen separation module.
Abstract:
Fibrous basic magnesium sulfate particles are continuously produced by the process comprising the following steps: (1) placing in a reaction vessel a seed particle-containing aqueous dispersion comprising fibrous basic magnesium sulfate seed particles dispersed in an aqueous medium; (2) supplying magnesium hydroxide and magnesium sulfate continuously into the reaction vessel under heating and stirring the seed particle-containing aqueous dispersion, whereby depositing basic magnesium sulfate produced by the reaction between the magnesium sulfate and magnesium hydroxide in the presence of water on the surfaces of the fibrous basic magnesium sulfate seed particles, to give an aqueous dispersion containing an increased amount of fibrous basic magnesium sulfate particles; (3) taking the aqueous dispersion obtained in the step (2) continuously out of the reaction vessel; and (4) recovering fibrous basic magnesium sulfate particles from the aqueous dispersion taken out of the reaction vessel.
Abstract:
A method produces an optical fiber without requiring a vertically large space, and an apparatus implements the method. The method produces an optical fiber by heating a lower-end portion of an optical fiber preform with a heating element so that the optical fiber preform can be drawn. In this method, the optical fiber preform is drawn by moving a heat-generating portion of the heating element from the lower-end portion toward an upper-end portion of the optical fiber preform. The apparatus produces an optical fiber by heating a lower-end portion of an optical fiber preform with a heating element so that the optical fiber preform can be drawn. The apparatus comprises a mechanism for moving a heat-generating portion of the heating element from the lower-end portion toward an upper-end portion of the optical fiber preform.
Abstract:
An object of the present invention is to provide a hydrogen separation material resistant to thermal shock, excellent in hydrogen separation characteristic and applicable to a hydrogen separation membrane, etc. and a manufacturing method thereof, as well as a hydrogen separation module and a hydrogen production apparatus comprising the same.In the hydrogen separation material, a silica glass membrane is formed on a porous support having a linear expansion coefficient of 2×10−6/K or less. The manufacturing method for the hydrogen separation material includes a porous support forming step of forming a porous support comprising porous silica glass and a silica glass membrane forming step of forming a silica glass membrane on the surface of the porous silica glass. The hydrogen separation module comprises the hydrogen separation material and a steam reforming catalyst. The hydrogen production apparatus comprises the hydrogen separation module.