摘要:
The present invention provides a chromium-free surface treatment agent, comprising: a resin compound having a specific bisphenol skeleton; cationic urethane resin emulsion; silane coupling agent; an organic titanium chelate compound; a quadrivalent vanadyl compound; a molybdic acid compound; and water, wherein these components are blended at predetermined ratios such that pH value of the surface treatment agent is in the range of 4 to 5. The one-pack type chromium-free surface treatment agent of the present invention exhibits good stability during storage and is capable of forming on a metal material surface a coating film excellent in corrosion resistance at a bending-processed portion of a steel sheet, solvent resistance and paintability after alkali degreasing.
摘要:
The present invention provides a chromium-free surface treatment liquid which enables forming, on a metal material surface, a film excellent in corrosion resistance at bent portions of a steel sheet, solvent resistance, coating properties after alkaline degreasing, and sweat resistance. The surface treatment liquid contains a resin compound having a specific bisphenol skeleton, a cationic urethane resin emulsion, a silane coupling agent, an organic titanium chelate compound, a quadrivalent vanadyl compound, a molybdate compound, a fluorine compound, and water at predetermined proportions. The pH of the surface treatment liquid is in the range of 4 to 5.
摘要:
The present invention provides a chromium-free surface treatment liquid which enables forming, on a metal material surface, a film excellent in corrosion resistance at bent portions of a steel sheet, solvent resistance, coating properties after alkaline degreasing, and sweat resistance. The surface treatment liquid contains a resin compound having a specific bisphenol skeleton, a cationic urethane resin emulsion, a silane coupling agent, an organic titanium chelate compound, a quadrivalent vanadyl compound, a molybdate compound, a fluorine compound, and water at predetermined proportions. The pH of the surface treatment liquid is in the range of 4 to 5.
摘要:
The present invention provides a chromium-free surface treatment agent, comprising: a resin compound having a specific bisphenol skeleton; cationic urethane resin emulsion; silane coupling agent; an organic titanium chelate compound; a quadrivalent vanadyl compound; a molybdic acid compound; and water, wherein these components are blended at predetermined ratios such that pH value of the surface treatment agent is in the range of 4 to 5. The one-pack type chromium-free surface treatment agent of the present invention exhibits good stability during storage and is capable of forming on a metal material surface a coating film excellent in corrosion resistance at a bending-processed portion of a steel sheet, solvent resistance and paintability after alkali degreasing.
摘要:
A hot-dip galvanized steel sheet includes a plating layer substantially composed of the η phase and an oxide layer disposed on a surface of the plating layer. The oxide layer has an average thickness of 10 nm or more and includes a Zn-based oxide layer and an Al-based oxide layer. A method for producing the hot-dip galvanized steel sheet includes a hot-dip galvanization step, a temper rolling step, and an oxidation step.
摘要:
A hot-dip galvanized steel sheet includes a plating layer substantially composed of the η phase and an oxide layer disposed on a surface of the plating layer. The oxide layer has an average thickness of 10 nm or more and includes a Zn-based oxide layer and an Al-based oxide layer. A method for producing the hot-dip galvanized steel sheet includes a hot-dip galvanization step, a temper rolling step, and an oxidation step.
摘要:
An aqueous surface-treatment liquid is a treatment liquid containing a water-soluble zirconium compound, water-dispersive particulate silica, a silane coupling agent, a vanadic acid compound, a phosphoric acid compound, a nickel compound, and an acrylic resin emulsion in particular proportions. A surface-treated galvanized steel sheet produced using the treatment liquid is a galvanized steel sheet having a surface-treatment coating on a surface thereof, and the coating contains a zirconium compound, particulate silica, a silane-coupling-agent-derived component, a vanadic acid compound, a phosphoric acid compound, a nickel compound, and an acrylic resin in particular proportions. The amount of coating on a zirconium basis is 10 to 200 mg/m2. This surface-treated galvanized steel sheet is chromate-free and has superior flat-portion corrosion resistance, blackening resistance, and appearance and corrosion resistance after press forming.
摘要翻译:水性表面处理液是特别是含有水溶性锆化合物,水分散性微粒二氧化硅,硅烷偶联剂,钒酸化合物,磷酸化合物,镍化合物,丙烯酸树脂乳液的处理液 比例。 使用处理液制造的表面处理镀锌钢板是其表面具有表面处理涂层的镀锌钢板,该涂层含有锆化合物,颗粒状二氧化硅,硅烷偶联剂衍生成分, 钒酸化合物,磷酸化合物,镍化合物和丙烯酸树脂。 锆的涂布量为10〜200mg / m 2。 这种经表面处理的镀锌钢板是无铬酸盐的,并且具有优异的平坦部分耐腐蚀性,耐黑变性,以及压制成型后的外观和耐腐蚀性。
摘要:
A surface-treated galvanized steel sheet includes a steel sheet, a zinc coating disposed on the steel sheet, and a film disposed on the zinc coating. The film has a thickness in the range of 0.01 to 3 μm and contains certain amounts of resin compound having a particular chemical structure, cationic urethane resin, vanadium compound, zirconium compound, compound having a phosphate group, and acid compound. The surface-treated galvanized steel sheet contains no hexavalent chromium in the film and is excellent in terms of corrosion resistance, alkali resistance, and solvent resistance.
摘要:
According to one embodiment, a method is disclosed for manufacturing a semiconductor device. The method can include forming a base region and an emitter region in a front surface of a semiconductor layer. The method can include forming a first impurity implantation region by implanting first impurity of a first conductivity type into a back surface of the semiconductor layer. The method can include selectively forming a second impurity implantation region by selectively implanting second impurity of a second conductivity type into the first impurity implantation region. In addition, the method can include irradiating the first impurity implantation region and the second impurity implantation region with laser light. A peak of impurity concentration profile in a depth direction of at least one of the first impurity implantation region and the second impurity implantation region before irradiation with the laser light is adjusted to a depth of 0.05 μm or more and 0.3 μm or less from the back surface of the semiconductor layer.