摘要:
According to this invention, there is provided a method of repairing a bump defect of a structure obtained by forming a predetermined pattern on a substrate, having the steps of forming a first thin film consisting of a material different from that of the substrate on the substrate around the bump defect or close to the bump defect, forming a second thin film on the bump defect and the first thin film to flatten an upper surface of the second thin film, performing simultaneous removal of the bump defect and the thin films on an upper portion of the projecting defect and around the bump defect using a charged particle beam, and performing removal of the thin films left in the step of performing simultaneous removal. According to this invention, there is provided to a method of repairing a divot defect of a structure obtained by forming a predetermined pattern on a substrate, having the steps of burying a material in the divot defect and forming a projecting portion projecting from a substrate surface, covering a region including the projecting portion with flattening films consisting of a material different from that of the substrate to flatten an upper surface of the region, performing simultaneous removal of the projecting portion and the flattening films around the projecting portion using a charged particle beam, and performing removal of the flattening films left in the step of performing simultaneous removal.
摘要:
According to this invention, there is provided a method of repairing a bump defect of a structure obtained by forming a predetermined pattern on a substrate, having the steps of forming a first thin film consisting of a material different from that of the substrate on the substrate around the bump defect or close to the bump defect, forming a second thin film on the bump defect and the first thin film to flatten an upper surface of the second thin film, performing simultaneous removal of the bump defect and the thin films on an upper portion of the projecting defect and around the bump defect using a charged particle beam, and performing removal of the thin films left in the step of performing simultaneous removal.
摘要:
An exposure mask having an excellent alignment accuracy between patterns, which is prepared by first forming on a light transmissive substrate a light shielding film or a semi-transparent film pattern (first pattern) somewhat larger than a desired dimension, forming thereon a semi-transparent film or a light transmissive film pattern (second pattern) so as to include all patterns of the desired dimensions made up of a light shielding part, a semi-transparent part and a light transmissive part, and then removing a projected part of the first pattern with use of the second pattern as a mask.The semi-transparent film is formed of at least two layers each of which contains a common element, thus the semi-transparent film can be made with use of the same apparatus and when patterning, etching process can be carried out with use of the same etchant.Further, since in a mask including the semi-transparent pattern, at least that area of a non-pattern zone where light reaches a wafer through the transfer, acts to shield the exposure light, too narrowed pattern or insufficient focal depth can be prevented.
摘要:
A photoresist pattern is formed on a quartz substrate. The quartz substrate is dipped into a silicon oxide supersaturated solution of hydrofluoric acid, and a silicon oxide is precipitated out of the supersaturated solution, thereby forming an SiO.sub.2 film on that exposed surface of the quartz substrate which is not covered with the photoresist pattern. After that, the photoresist pattern is ashed by oxygen plasma, and the ashed pattern is removed. The SiO.sub.2 film remaining on the quartz substrate serves as a phase shifter.
摘要:
The via contact structure is rendered into a dual damascene type via contact structure having a wide groove and a via contact hole lying below the wide groove, and the interior of the lower via contact hole is filled up with a filling material composed of tungsten, while, the interior of the upper groove is filled up with aluminum. Since the interior of the lower via contact hole is thus filled up with a filling material comprising tungsten, aluminum which has a low reflowability may be used only in the upper groove. As for the filling material for filling up the wide groove, the wide groove can be filled up sufficiently well even with aluminum which is not high in reflowability. By combining the filling of the via contact hole with tungsten and the filling of the groove with aluminum as mentioned above, a via contact filling with a high aspect ratio can be realized. Further, the problem or drawback that, at the time of forming the second metal wiring layer, the first metal wiring layer may be melted due to the high-temperature heat treatment performed for depositing the metal material is eliminated, and thus, it becomes possible to realize a dual damascene type via contact structure which can be applied to a multi-layer wiring structure.
摘要:
An exposure mask having an excellent alignment accuracy between patterns, which is prepared by first forming on a light transmissive substrate a light shielding film or a semi-transparent film pattern (first pattern) somewhat larger than a desired dimension, forming thereon a semi-transparent film or a light transmissive film pattern (second pattern) so as to include all patterns of the desired dimensions made up of a light shielding part, a semi-transparent part and a light transmissive part, and then removing a projected part of the first pattern with use of the second pattern as a mask. The semi-transparent film is formed of at least two layers each of which contains a common element, thus the semi-transparent film can be made with use of the same apparatus and when patterning, etching process can be carried out with use of the same etchant. Further, since in a mask including the semi-transparent pattern, at least that area of a non-pattern zone where light reaches a wafer through the transfer, acts to shield the exposure light, too narrowed pattern or insufficient focal depth can be prevented.
摘要:
A probe is attached to a support plate vertically to the surface of the support plate. A drop of a molten metal is formed at a tip portion of the probe. The support plate has a heater for setting the temperature of the probe and the drop of the molten metal at the tip portion of the probe. The probe is situated at a position corresponding to a position of an electrode of an LSI. The probe is connected to a measuring device for evaluating characteristics of the LSI by wiring. The drop of the molten metal connects the probe and the electrode of the LSI electrically.
摘要:
A method for forming a metal-strapped polysilicon gate and for simultaneously forming a strapped-metal polysilicon gate and a metal contact filling includes the steps of forming a gate dielectric layer on a surface of a silicon substrate; forming a polysilicon layer on the gate dielectric layer; forming a first insulating layer on the polysilicon layer; forming insulating spacers on either side of the polysilicon layer and the first insulating layer; and forming ion implantation regions in the surface of the silicon substrate. Next, a second insulating layer is deposited on the silicon substrate, and the second insulating layer is polished using chemical mechanical polishing to planarize the upper surface of the second insulating layer with the upper surface of the first insulating layer as a polishing stopper. Then, a contact hole is formed in the second insulating film, wherein the contact hole is laterally spaced from the polysilicon layer and the first insulating layer. Subsequent steps include: removing the first insulating layer, thereby forming an unfilled region above the polysilicon layer; depositing a metal such as tungsten in the unfilled region and the contact hole; and polishing the deposited metal layer to planarize the upper surface of the metal with the upper surface of the second insulating layer.
摘要:
An exposure mask having an excellent alignment accuracy between patterns, which is prepared by first forming on a light transmissive substrate a light shielding film or a semi-transparent film pattern (first pattern) somewhat larger than a desired dimension, forming thereon a semi-transparent film or a light transmissive film pattern (second pattern) so as to include all patterns of the desired dimensions made up of a light shielding part, a semi-transparent part and a light transmissive part, and then removing a projected part of the first pattern with use of the second pattern as a mask.The semi-transparent film is formed of at least two layers each of which contains a common element, thus the semi-transparent film can be made with use of the same apparatus and when patterning, etching process can be carried out with use of the same etchant.Further, since in a mask including the semi-transparent pattern, at least that area of non-pattern zone where light reaches a wafer through the transfer, acts to shield the exposure light, too narrowed pattern or insufficient focal depth can be prevented.
摘要:
A light emitting organic thin film including at least one compound represented by Formula (PQ-1) and at least one compound represented by Formula (BN-1). In Formula (PQ-1), each of Ra, Rb and Rc independently represents a hydrogen atom or an alkyl group, wherein any one of Ra, Rb and Rc represents a hydrogen atom and the remaining two represent an alkyl group. Each of R1 to R5 independently represents a hydrogen atom, an alkyl group, an aryl group, a fluorine atom or a cyano group. Each of Rx and Ry independently represents an alkyl group or a phenyl group. In Formula (BN-1), Ar1 represents an arylene group that may have a substituent Z. Ar2 represents a condensed hydrocarbyl group that may have a substituent Z. Each of R101 to R113 independently represents a phenyl group, or the like.